Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Hydrogen storage properties of nanoconfined LiBH4-NaBH4

    234064.pdf (248.8Kb)
    Access Status
    Open access
    Authors
    Javadian, P.
    Sheppard, Drew
    Buckley, Craig
    Jensen, T.
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Javadian, P. and Sheppard, D. and Buckley, C. and Jensen, T. 2015. Hydrogen storage properties of nanoconfined LiBH4-NaBH4. International Journal of Hydrogen Energy. 40 (43): pp. 14916-14924.
    Source Title
    International Journal of Hydrogen Energy
    DOI
    10.1016/j.ijhydene.2015.08.075
    ISSN
    0360-3199
    School
    Department of Physics and Astronomy
    URI
    http://hdl.handle.net/20.500.11937/14364
    Collection
    • Curtin Research Publications
    Abstract

    In this study a eutectic melting composite of 0.62LiBH4-0.38NaBH4 has been infiltrated in two nanoporous resorcinol formaldehyde carbon aerogel scaffolds with similar pore sizes (37 and 38 nm) but different BET surface areas (690 and 2358 m2/g) and pore volumes (1.03 and 2.64 mL/g). This investigation clearly shows decreased temperature of hydrogen desorption, and improved cycling stability during hydrogen release and uptake of bulk 0.62LiBH4-0.38NaBH4 when nanoconfined into carbon nanopores. The hydrogen desorption temperature of bulk 0.62LiBH4-0.38NaBH4 is reduced by ~107 °C with the presence of carbon, although a minor kinetic variation is observed between the two carbon scaffolds. This corresponds to apparent activation energies, EA, of 139 kJ mol-1 (bulk) and 116-118 kJ mol-1 (with carbon aerogel). Bulk 0.62LiBH4-0.38NaBH4 has poor reversibility during continuous hydrogen release and uptake cycling, maintaining 22% H2 capacity after four hydrogen desorptions (1.6 wt.% H2). In contrast, nanoconfinement into the high surface area carbon aerogel scaffold significantly stabilizes the hydrogen storage capacity, maintaining ~70% of the initial capacity after four cycles (4.3 wt.% H2).

    Related items

    Showing items related by title, author, creator and subject.

    • Hydrogen Desorption Properties of Bulk and Nanoconfined LiBH4-NaAlH4
      Javadian, P.; Sheppard, Drew; Buckley, C.; Jensen, T. (2016)
      Nanoconfinement of 2LiBH4-NaAlH4 into a mesoporous carbon aerogel scaffold with a pore size, BET surface area and total pore volume of Dmax = 30 nm, SBET = 689 m2/g and Vtot = 1.21 mL/g, respectively is investigated. ...
    • Reversibility of LiBH4 Facilitated by the LiBH4-Ca(BH4)2 Eutectic
      Javadian, P.; Gharibdoust, S.; Li, H.; Sheppard, Drew; Buckley, C.; Jensen, T. (2017)
      © 2017 American Chemical Society. The hydrogen storage properties of eutectic melting 0.68LiBH 4 -0.32Ca(BH 4 ) 2 (LiCa) as bulk and nanoconfined into a high surface area, S BET = 2421 ± 189 m 2 /g, carbon aerogel ...
    • Eutectic melting in metal borohydrides
      Paskevicius, Mark; Ley, M.; Sheppard, Drew; Jensen, T.; Buckley, Craig (2013)
      A series of monometallic borohydrides and borohydride eutectic mixtures have been investigated during thermal ramping by mass spectroscopy, differential scanning calorimetry, and photography. Mixtures of LiBH4–NaBH4, ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.