Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Modification of leaf cytology and anatomy in Brassica napus grown under above ambient levels of supplemental UV-B radiation

    Access Status
    Fulltext not available
    Authors
    Fagerberg, W.
    Bornman, Janet
    Date
    2005
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Fagerberg, W. and Bornman, J. 2005. Modification of leaf cytology and anatomy in Brassica napus grown under above ambient levels of supplemental UV-B radiation. Phosphorus Letter. 4: pp. 275-279.
    Source Title
    Phosphorus Letter
    ISSN
    09179976
    URI
    http://hdl.handle.net/20.500.11937/14415
    Collection
    • Curtin Research Publications
    Abstract

    Plants exposed to natural solar radiation usually show acclimation responses on a daily and seasonal basis. Many of these responses are complex and modified by interactions with acclimation responses to other climatic factors. While changes in photosynthetically active radiation (PAR, 400–700 nm) are the driving force for many acclimation responses in plants, radiation outside the PAR range is also important. Recently, interest has increased in the potential role of UV-A (320–400 nm) and UV-B (280–320 nm) components of sunlight in plant developmental, physiological and daily acclimation processes. In order to explore the role of UV-B further, Brassica napus L. cv Paroll plants were grown to maturity under 13 kJ d-1 of biologically effective ultraviolet-B radiation (UV-BBE, 280–320 nm) plus 800 lmol photons m-2 s-1 photosynthetically active radiation (PAR, 400–700 nm) or PAR alone. Leaf anatomy and palisade cell structure were quantified using stereological techniques. The leaves of plants grown under UV-B radiation exhibited an increase in overall leaf width, although no change in leaf anatomy was discerned. Palisade cells in UV-B exposed leaves showed a significant decrease in chloroplast, mitochondrial, starch, and microbody volume density (Vv), while the vacuolar Vv increased compared to cells exposed to PAR only. In UV-B exposed leaves, there was an increase in the appressed and non-appressed thylakoid surface area density (Sv) within the chloroplasts. Since the relative proportion of appressed to non-appressed thylakoid surface area did not change, both thylakoid systems changed in concert with each other. Thylakoid stacks were broader and shorter in leaves subjected to UV-B. In general these responses were similar to those which occurred in plants moved from a high to low PAR environment and similar to mature plants exposed to 13 kJ d-1 UV-BBE for only a short period of time. Although UV absorbing pigments increased by 21% in UV-B exposed leaves, there was no significant difference in chlorophyll a,b or carotenoid content compared to plants exposed to only PAR.

    Related items

    Showing items related by title, author, creator and subject.

    • Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors
      Caldwell, M.; Bornman, Janet; Ballare, C.; Flint, S.; Kulandaivelu, G. (2007)
      There have been significant advances in our understanding of the effects of UV-B radiation on terrestrial ecosystems, especially in the description of mechanisms of plant response. A further area of highly interesting ...
    • Phenology and Growth of the Grasstree Xanthorrhoea preissii in Relation to Fire and Season
      Korczynskyj, Dylan (2002)
      Australian grasstrees are a long-lived group of arborescent, monocotyledonous plants that persist in fire-prone landscapes. Renowned for their capacity to survive fire, and flower soon after, these species have long ...
    • Ecology and ecophysiology of southwestern Australian hakea species with contrasting leaf morphology and life forms.
      Groom, Philip K. (1996)
      Members of the genus Hakea (Proteaceae) are sclerophyllous, evergreen perennial shrubs or small trees endemic to Australia, with 65% of species confined to the South-West Botanical Province (southwestern Australia). ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.