Aluminum oxide as a dual-functional modifier of Ni-based anodes of solid oxide fuel cells for operation on simulated biogas
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Al2O3 and SnO2 additives are introduced into the Ni–YSZ cermet anode of solid oxide fuel cells (SOFCs) for operation on simulated biogas. The effects of incorporating Al2O3/SnO2 on the electrical conductivity, morphology, coking resistance and catalytic activity for biogas reforming of the cermet anode are systematically studied. The electrochemical performance of the internal reforming SOFC is enhanced by introducing an appropriate amount of Al2O3 into the anode, but it becomes worse with excess alumina addition. For SnO2, a negative effect on the electrochemical performance is demonstrated, although the coking resistance of the anode is improved. For fuel cells operating on biogas, stable operation under a polarization current for 130 h at 750 °C is achieved for a cell with an Al2O3-modified anode, while cells with unmodified or SnO2-modified Ni–YSZ anodes show much poorer stability under the same conditions. The improved performance of the cell with the Al2O3-modified anode mainly results from the suppressed coking and sintering of the anode and from the formation of NiAl2O4 in the unreduced anode. In sum, modifying the anode with Al2O3 may be a useful and facile way to improve the coking resistance and electrochemical performance of the nickel-based cermet anodes for SOFCs.
Related items
Showing items related by title, author, creator and subject.
-
Qu, J.; Wang, Wei; Chen, Y.; Li, H.; Zhong, Y.; Yang, G.; Zhou, W.; Shao, Zongping (2018)© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim The reaction between a Ni-Y2O3-stabilized ZrO2 (Ni-YSZ) cermet anode and La5.4WO12-d (LW) during cell fabrication is utilized to reduce carbon deposition in solid oxide ...
-
Qu, J.; Wang, W.; Chen, Y.; Deng, X.; Shao, Zongping (2016)In this study, some basic oxide additives are introduced into the conventional Ni–Ce0.8Sm0.2O1.9 (SDC) cermet anodes of solid oxide fuel cells (SOFCs) for using methane as the fuel. The effects of incorporating basic ...
-
Chang, H.; Chen, H.; Shao, Zongping; Shi, J.; Bai, J.; Li, S. (2016)© 2016 The Royal Society of Chemistry.An independent catalyst layer is applied to develop a highly effective way to reduce coking when operating in methane based fuels, in which the catalyst layer is separated from a Ni ...