Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    An iterative algorithm based on model-reality differences for discrete-time nonlinear stochastic optimal control problems

    Access Status
    Fulltext not available
    Authors
    Kek, S.
    Aziz, M.
    Teo, Kok Lay
    Ahmad, R.
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Kek, S. and Aziz, M. and Teo, K.L. and Ahmad, R. 2013. An iterative algorithm based on model-reality differences for discrete-time nonlinear stochastic optimal control problems. Numerical Algebra, Control and Optimization. 3 (1): pp. 109-125.
    Source Title
    Numerical Algebra, Control and Optimization
    DOI
    10.3934/naco.2013.3.109
    ISSN
    2155-3289
    School
    Department of Mathematics and Statistics
    URI
    http://hdl.handle.net/20.500.11937/15129
    Collection
    • Curtin Research Publications
    Abstract

    An iterative algorithm, which is called the integrated optimal control and parameter estimation algorithm, is developed for solving a discrete time nonlinear stochastic control problem. It is based on the integration of the principle of model-reality differences and Kalman filtering theory, where the dynamic integrated system optimization and parameter estimation algorithm are used interactively. In this approach, the weighted least-square output residual is included in the cost function by appropriately monitoring the weighted matrix. An improved linear quadratic Gaussian optimal control model, rather than the original optimal control problem, is solved. Subsequently, the model optimum is updated using the adjusted parameters induced by the differences between the real plant and the model used. These updated solutions converge to the true optimum, despite model-reality differences. For illustration, the optimal control of a nonlinear continuous stirred tank reactor problem is considered and solved by using the method proposed.

    Related items

    Showing items related by title, author, creator and subject.

    • Optimal control problems involving constrained, switched, and delay systems
      Loxton, Ryan Christopher (2010)
      In this thesis, we develop numerical methods for solving five nonstandard optimal control problems. The main idea of each method is to reformulate the optimal control problem as, or approximate it by, a nonlinear programming ...
    • Computational methods for solving optimal industrial process control problems
      Chai, Qinqin (2013)
      In this thesis, we develop new computational methods for three classes of dynamic optimization problems: (i) A parameter identification problem for a general nonlinear time-delay system; (ii) an optimal control problem ...
    • Optimal control problems with constraints on the state and control and their applications
      Li, Bin (2011)
      In this thesis, we consider several types of optimal control problems with constraints on the state and control variables. These problems have many engineering applications. Our aim is to develop efficient numerical methods ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.