High activity electrocatalysts from metal-organic framework-carbon nanotube templates for the oxygen reduction reaction
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Developing economical and commercially available materials to replace precious and nondurable platinum based catalysts is a very important issue in contemporary fuel cell technology. Nanostructured carbon materials have the potential to reduce the costs, improve the fuel tolerance and scalability; however, they are limited presently by their relatively low catalytic activity. Herein, we have synthesized a new electrocatalyst for the oxygen reduction reaction derived from in situ growth of metal-organic frameworks on carbon nanotubes, followed by pyrolysis. The most efficient catalyst yielded comparable catalytic activity than commercial platinum-based catalysts and a low Tafel slope of 49 mV dec-1. This excellent performance is attributable to the formation of 3D structured porous and N doped carbon/carbon nanotubular composites. High surface area and continuous catalytic layer on graphitic carbon boosts the active sites and reactivity during electrolysis.
Related items
Showing items related by title, author, creator and subject.
-
Fisher, Nicholas G. (2000)Activated carbon is widely used in the gold processing industry as an adsorbent for the gold cyanide complex, [Au(CN)(subscript)2]. However, many other processing reagents are also adsorbed (termed fouling), which compete ...
-
Allpike, Bradley (2008)Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...
-
Chen, R.; Li, L.; Liu, Z.; Lu, M.; Wang, C.; Li, H.; Ma, W.; Wang, Shaobin (2017)© 2017 A&WMAActivated carbons were prepared from tobacco stem by chemical activation using potassium hydroxide (KOH), potassium carbonate (K2CO3), and zinc chloride (ZnCl2). The effects of the impregnation ratio (activating ...