Show simple item record

dc.contributor.authorMistry, S.
dc.contributor.authorBouguettaya, A.
dc.contributor.authorDong, Hai
dc.contributor.authorQin, A.
dc.identifier.citationMistry, S. and Bouguettaya, A. and Dong, H. and Qin, A. 2015. Predicting Dynamic Requests Behavior in Long-Term IaaS Service Composition, in Miller, J. and Zhu, H. (ed), Proceedings of the 2015 IEEE International Conference on Web Services (ICWS), Jun 27-Jul 2 2015, pp. 49-56. New York: IEEE.

© 2015 IEEE. We propose a novel composition framework for an Infrastructure-as-a-Service (IaaS) provider that selects the optimal set of long-term service requests to maximize its profit. Existing solutions consider an IaaS provider's economic benefits at the time of service composition and ignore the dynamic nature of the consumer requests in a long-term period. The proposed framework deploys a new multivariate HMM and ARIMA model to predict different patterns of resource utilization and Quality of Service fluctuation tolerance levels of existing service consumers. The dynamic nature of new consumer requests with no history is modelled using a new community based heuristic approach. The predicted long-term service requests are optimized using Integer Linear Programming to find a proper configuration that maximizes the profit of an IaaS provider. Experimental results prove the feasibility of the proposed approach.

dc.titlePredicting Dynamic Requests Behavior in Long-Term IaaS Service Composition
dc.typeConference Paper
dcterms.source.titleProceedings - 2015 IEEE International Conference on Web Services, ICWS 2015
dcterms.source.seriesProceedings - 2015 IEEE International Conference on Web Services, ICWS 2015
curtin.departmentSchool of Accounting
curtin.accessStatusFulltext not available

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record