Single-Ion Heat Capacities, Cp(298)ion' of Solids: with a Novel Route to Heat-Capacity Estimation of Complex Anions
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
Single-ion heat capacities, Cp(298)ion, are additive values for the estimation of room-temperature (298 K) heat capacities of ionic solids. They may be used for inferring the heat capacities of ionic solids for which values are unavailable and for checking reported values, thus complementing our independent method of estimation from formula unit volumes (termed volume-based thermodynamics, VBT). Analysis of the reported heat-capacity data presented here provides a new self-consistent set of heat capacities for both cations and anions that is compatible (and thus may be combined) with an extensive set developed by Spencer. The addition of a large range of silicate species permits the estimation of the heat capacities of many silicate minerals. The single-ion heat capacities of individual silicate anions are observed to be strictly proportional to the total number of atoms (Si plus O), n, contained within the silicate anion complex itself (e.g., for the anion Si2O7 2-, n = 9, for SiO42-, n = 5), Cp(silicate anion)/J K-1 mol-1 = 13.8n, in a new rule that is an extension of the Neumann-Kopp relationship. The same linear relationship applies to other homologous anion series (for example, oxygenated heavymetal anion complexes such as niobates, bismuthates, and tantalates), although with a different proportionality constant. A similar proportionality, Cp(complex anion)/J K-1 mol-1 ˜ 17.5n, which may be regarded as a convenient “rule of thumb”, also applies, although less strictly, to complex anions in general. The proportionality constants reflect the rigidity of the complexanion, being always less than the Dulong-Petit value of 25 J K-1 mol-1. An emergent feature of our VBT and single-ion approaches to an estimation of the thermodynamic properties is the identification of anomalies in measured values, as is illustrated in this paper.
Related items
Showing items related by title, author, creator and subject.
-
Glasser, Leslie (2013)Formation enthalpies, ΔfH(298), are essential thermodynamic descriptors of the stability of materials, with many available from the numerous thermodynamic databases. However, there is a need for predictive methods to ...
-
Glasser, Leslie (2014)Materials with the garnet crystal structure include silicate minerals of importance both in geology, on account of their use in geothermobarometry, and industrially as abrasives. As a consequence of the former, there is ...
-
Glasser, Leslie; Jenkins, D. B. H. (2009)Single-ion standard entropies, Sion, are additive values for estimation of the room-temperature (298 K) entropies of ionic solids. They may be used for inferring the entropies of ionic solids for which values are unavailable ...