Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Lead isotopic systematics of massive sulphide deposits in the Urals: Applications for geodynamic setting and metal sources

    Access Status
    Fulltext not available
    Authors
    Tessalina, Svetlana
    Herrington, R.
    Taylor, R.
    Sundblad, K.
    Maslennikov, V.
    Orgeval, J.
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Tessalina, S. and Herrington, R. and Taylor, R. and Sundblad, K. and Maslennikov, V. and Orgeval, J. 2016. Lead isotopic systematics of massive sulphide deposits in the Urals: Applications for geodynamic setting and metal sources. Ore Geology Reviews. 72 Part1: pp. 22-36.
    Source Title
    Ore Geology Reviews
    DOI
    10.1016/j.oregeorev.2015.06.016
    ISSN
    0169-1368
    School
    Department of Applied Geology
    URI
    http://hdl.handle.net/20.500.11937/15780
    Collection
    • Curtin Research Publications
    Abstract

    Lead isotopic compositions of 61 samples (55 galena, one cerussite [PbCO3] and five whole ore samples) from 16 Volcanic Hosted Massive Sulphide (VHMS) deposits in the Urals Orogeny show an isotopic range between 17.437 and 18.111 for 206Pb/204Pb; 15.484 and 15.630 for 207Pb/204Pb and 37.201 and 38.027 for 208Pb/204Pb. Lead isotopic data from VHMS deposits display a systematic increase in ratios across the Urals paleo-island arc zone, with the fore-arc having the least radiogenic lead compositions and the back-arc having the most radiogenic lead. The back arc lead model ages according to Stacey–Kramers model are close to the biostratigraphic ages of the ore-hosting volcano-sedimentary rocks (ca. 400 Ma). In contrast, less radiogenic lead from the fore-arc gives Neoproterozoic (~ 700 Ma) to Cambrian (480 Ma) lead model ages with low two-stage model μ values of 8.8 (parameter μ = 238U/204Pb reflects the averaged U/Pb ratio in the lead source), progressively increasing stratigraphically upwards to 9.4 in the cross-section of the ore-hosting Baymak–Buribai Formation. The range of age-corrected uranogenic lead isotopic ratios of the volcanic and sedimentary host rocks is also quite large: 206Pb/204Pb = 17.25–17.96; 207Pb/204Pb = 15.48–15.56, and generally matches the ores, with the exception of felsic volcanics and plagiogranite from the Karamalytash Formation being less radiogenic compare to the basaltic part of the cross-section, which would potentially imply a different source for the generation of felsic volcanics.This may be represented by older Neoproterozoic oceanic crust, as indicated by multiple Neoproterozoic ages of mafic–ultramafic massifs across the Urals. The relics of these massifs have been attributed by some workers to belong to the earlier Neoproterozoic stage of pre-Uralian ocean development. Alternative sources of lead may be Archean continental crust fragments/sediments sourced from the adjacent East-European continent, or Proterozoic sediments accumulated near the adjacent continent and presently outcropping near the western edge of Urals (Bashkirian anticlinorium). The contribution of Archean rocks/sediments to the Urals volcanic rock formation is estimated to be less than 0.1% based on Pb–Nd mixing models. The most radiogenic lead found in VHMS deposits and volcanics in the Main Uralian Fault suture zone, rifted-arc and back-arc settings, show similar isotopic compositions to those of the local Ordovician MORBs, derived from highly depleted mantle metasomatized during dehydrational partial melting of subducted slab and oceanic sediments. The metasomatism is expressed as high Δ 207Pb/204Pb values relative to the average for depleted mantle in the Northern hemisphere, and occurred during the subduction of oceanic crust and sediments under the depleted mantle wedge. A seemingly much younger episode of lead deposition with Permian lead model ages (ca. 260–280 Ma) was recorded in the hanging wall of two massive sulphide deposits.

    Related items

    Showing items related by title, author, creator and subject.

    • Archean Pb isotope variability tracks crust-mantle fractionation, granite production, and ore deposit formation
      Zametzer, Andreas ; Kirkland, Chris ; Barham, Milo ; Smithies, R. Hugh; Huston, D.L.; Champion, D.C. (2023)
      Various geological processes that affect Earth's crust may be encoded into isotopic tracers preserved in rocks and minerals. The enhanced sensitivity of U, Th, and Pb to crustal fractionation processes allows Pb isotopes ...
    • The Proterozoic geological history of the Irumide belt, Zambia
      De Waele, Bert (2004)
      The Irumide belt is an elongate crustal province characterised by Mesoproterozoic tectonism and magmatism that stretches over a distance of approximately 900 kilometers from central Zambia to the Zambia-Tanzania border ...
    • Highly Siderophile Elements distribution, Os-S isotope systematics and U-Pb dating of mafic-ultramafic-hosted massive sulphide deposits (Southern Urals) – Implications on the sources of metals
      Tessalina, Svetlana; Belousova, E. (2017)
      The behaviour of Highly Siderophile Elements (HSEs), including the Platinum Group Elements (PGEs), Re and Au, is still poorly known in hydrothermal systems due to their low concentrations in hydrothermal fluids and related ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.