Mutual Validation of GNSS Height Measurements and High-precision Geometric-astronomical Leveling
Access Status
Authors
Date
2010Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
The original publication is available at : http://www.springerlink.com
Collection
Abstract
The method of geometric-astronomical leveling is presented as a suited technique for the validation of GNSS (Global Navigation Satellite System) heights. In geometric-astronomical leveling, the ellipsoidal height differences are obtained by combining conventional spirit leveling and astronomical leveling. Astronomical leveling with recently developed digital zenith camera systems is capable of providing the geometry of equipotential surfaces of the gravity field accurate to a few 0.1 mm per km. This is comparable to the accuracy of spirit leveling. Consequently, geometric-astronomical leveling yields accurate ellipsoidal height differences that may serve as an independent check on GNSS height measurements at local scales. A test was performed in a local geodetic network near Hanover. GPS observations were simultaneously carried out at five stations over a time span of 48 h and processed considering state-of-the-art techniques and sophisticated new approaches to reduce station-dependent errors. The comparison of GPS height differences with those from geometric-astronomical leveling shows a promising agreement of some millimeters. The experiment indicates the currently achievable accuracy level of GPS height measurements and demonstrates the practical applicability of the proposed approach for the validation of GNSS height measurements as well as the evaluation of GNSS height processing strategies.
Related items
Showing items related by title, author, creator and subject.
-
Featherstone, Will; Kirby, Jonathan; Hirt, Christian; Filmer, Michael; Claessens, Sten; Brown, N.; Hu, Guorong; Johnston, G. (2011)AUSGeoid09 is the new Australia-wide gravimetric quasigeoid model that has been a posteriori fitted to the Australian Height Datum (AHD) so as to provide a product that is practically useful for the more direct determination ...
-
Brown, N.; Featherstone, Will; Hu, G.; Johnston, G. (2011)In an absolute sense, AUSGeoid09 is an order of magnitude more accurate than AUSGeoid98 at converting ellipsoidal heights to Australian Height Datum (AHD) heights and vice versa. Results of this study show AUSGeoid09 can ...
-
Filmer, Michael Shaun (2010)The Australian Height Datum (AHD) was established in 1971, and is the basis for all physical heights in Australia. However, a complete revision of the AHD has never occurred, despite problems that, although not always ...