A method to analyze the potential of optical remote sensing for benthic habitat mapping
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
This open access article is distributed under the Creative Commons license http://creativecommons.org/licenses/by/4.0/
Collection
Abstract
Quantifying the number and type of benthic classes that are able to be spectrally identified in shallow water remote sensing is important in understanding its potential for habitat mapping. Factors that impact the effectiveness of shallow water habitat mapping include water column turbidity, depth, sensor and environmental noise, spectral resolution of the sensor and spectral variability of the benthic classes. In this paper, we present a simple hierarchical clustering method coupled with a shallow water forward model to generate water-column specific spectral libraries. This technique requires no prior decision on the number of classes to output: the resultant classes are optically separable above the spectral noise introduced by the sensor, image based radiometric corrections, the benthos’ natural spectral variability and the attenuating properties of a variable water column at depth. The modeling reveals the effect reducing the spectral resolution has on the number and type of classes that are optically distinct. We illustrate the potential of this clustering algorithm in an analysis of the conditions, including clustering accuracy, sensor spectral resolution and water column optical properties and depth that enabled the spectral distinction of the seagrass Amphibolis antartica from benthic algae.
Related items
Showing items related by title, author, creator and subject.
-
Reichstetter, M.; Fearns, Peter; Weeks, S.; McKinna, Lachlan; Roelfsema, C.; Furnas, M. (2015)Most ocean color algorithms are designed for optically deep waters, where the seafloor has little or no effect on remote sensing reflectance. This can lead to inaccurate retrievals of inherent optical properties (IOPs) ...
-
Hick, Peter T. (1997)This thesis illustrates the specific aspects that influence or limit the application of remotely-sensed data for information retrieval from coastal marine, estuarine and riverine environments. The thesis is drawn principally ...
-
Antoine, David; Hooker, S.; Belanger, S.; Matsuoka, A.; Babin, M. (2013)A data set of radiometric measurements collected in the Beaufort Sea (Canadian Arctic) in August 2009 (Malina project) is analyzed in order to describe apparent optical properties (AOPs) in this sea, which has been subject ...