Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    An early Paleoproterozoic high-K intrusive complex in southwestern Tarim Block, NW China: Age, geochemistry, and tectonic implications

    Access Status
    Fulltext not available
    Authors
    Zhang, C.
    Li, Zheng-Xiang
    Li, X.
    Yu, H.
    Ye, H.
    Date
    2007
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Zhang, C. and Li, Z. and Li, X. and Yu, H. and Ye, H. 2007. An early Paleoproterozoic high-K intrusive complex in southwestern Tarim Block, NW China: Age, geochemistry, and tectonic implications. Gondwana Research. 12: pp. 101-112.
    Source Title
    Gondwana Research
    DOI
    10.1016/j.gr.2006.10.006
    ISSN
    1342937X
    URI
    http://hdl.handle.net/20.500.11937/15894
    Collection
    • Curtin Research Publications
    Abstract

    Systematic geochronologic, geochemical, and Nd isotopic analyses were carried out for an early Paleoproterozoic high-K intrusive complex exposed in southwestern Tarim, NW China. The results provide a better understanding of the Paleoproterozoic tectonic evolution of the Tarim Block. Zircon U–Pb age dating indicates two Paleoproterozoic magmatic episodes occurring at ca. 2.41 Ga and ca. 2.34 Ga respectively, which were followed by a ca. 1.9 Ga metamorphic event. The 2.41 Ga granodiorite–adamellite suite shares characteristics of late to post-orogenic metaluminous A-type granites in its high alkalinity (Na2O+K2O=7.6–9.3%), total REE (410–788 ppm), Zr (370–660 ppm), and Y (21.7– 58.4 ppm) contents. eNd(t) values for the suite range from -3.22 to -4.71 and accordingly the Nd modal ages (T2DM) vary between 3.05 Ga and 3.17 Ga. Based on geochemical data, the 2.34 Ga suite can be subdivided into two sub-suites, namely A-type and S-type. However, both types have comparable Nd isotope compositions (eNd(t)˜-0.41 to -2.08) and similar narrow T2DM ranges (2.76–2.91 Ga). Geochemical and Nd isotopic data for the high-K intrusive complex, in conjunction with the regional geological setting, suggest that both the 2.41 Ga suite and the 2.34 Ga A-type sub-suite might have been produced by partial melting of the Archean mafic crust in a continental rift environment. The S-type sub-suite is thought to have formed by partial melting of felsic pelites and/or metagreywackes recycled from Archean crust (TTG?). Gabbro enclaves with positive eNd(t) value (2.15) have been found to be intermingling within the 2.34 Ga suite; ca. 2.34–2.36 Ga gabbroic dykes and adamellites have previously been documented in eastern Tarim. These observations indicate that the high-K intrusions may reflect the emergence of depleted mantle upwelling beneath the Tarim Block at that time. We suggest a three-stages model for the Precambrian crustal evolution in the Tarim Block: (1) the formation of proto-crust (TTG) by ca. 2.5 Ga, (2) episodes of felsic magmatism possibly occurring in continental rift environments at ca. 2.41 Ga and ca. 2.34–2.36 Ga, and (3) ca. 1.9 Ga metamorphism that may represent the solidification of the Precambrian basement of the Tarim Block.

    Related items

    Showing items related by title, author, creator and subject.

    • Sources and conditions for the formation of Jurassic post-orogenic high-K granites in the Western Guangdong Province, SE China
      Huang, Hui-Qing (2012)
      High-K granites have become volumetrically important since at least Proterozoic. Their study bears important implications to crustal and tectonic evolutions. Despite of intensive research, sources and conditions for the ...
    • Synchronous crustal growth and reworking recorded in late Paleoproterozoic granitoids in the northern Tarim craton: In situ zircon U-Pb-Hf-O isotopic and geochemical constraints and tectonic implications
      Ge, R.; Zhu, W.; Wilde, Simon; He, J.; Cui, X. (2015)
      Identifying the relative contribution of various crustal and mantle materials in the source of granitoids is crucial for the study of granite petrogenesis and crustal growth. Extensive and diverse late Paleoproterozoic ...
    • Precambrian evolution and cratonization of the Tarim Block, NW China: Petrology, geochemistry, Nd-isotopes and U–Pb zircon geochronology from Archaean gabbro-TTG–potassic granite suite and Paleoproterozoicmetamorphic belt
      Zhang, C.; Li, H.; Santosh, M.; Li, Zheng-Xiang; Zou, H.; Wang, H.; Ye, H. (2012)
      We report field characteristics, petrography, geochemistry and isotopic ages of the Neoarchaean intrusive complex and the Paleoproterozoic metamorphic belt around Quruqtagh in the northern margin of the Tarim Block, NW ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.