Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Uptake and distribution of ions reveal contrasting tolerance mechanisms for soil and water salinity in okra (Abelmoschus esculentus) and tomato (Solanum esculentum)

    213713_213713 pdf.pdf (593.5Kb)
    Access Status
    Open access
    Authors
    Kamaluldeen, J.
    Yunusa, I.
    Zerihun, Ayalsew
    Bruhl, J.
    Kristiansen, P.
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Kamaluldeen, J. and Yunusa, I. and Zerihun, A. and Bruhl, J. and Kristiansen, P. 2014. Uptake and distribution of ions reveal contrasting tolerance mechanisms for soil and water salinity in okra (Abelmoschus esculentus) and tomato (Solanum esculentum). Agricultural Water Management. 146: pp. 95-104.
    Source Title
    Agricultural Water Management
    DOI
    10.1016/j.agwat.2014.07.027
    ISSN
    03783774
    School
    Department of Environment and Agriculture
    Remarks

    NOTICE: this is the author’s version of a work that was accepted for publication in Agricultural Water Management. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Agricultural Water Management, Vol.146 (2014). DOI: 10.1016/j.agwat.2014.07.027

    URI
    http://hdl.handle.net/20.500.11937/15955
    Collection
    • Curtin Research Publications
    Abstract

    Okra and tomatoes are major vegetable crops commonly grown under irrigation, and understanding whether they respond to salinity by withstanding (tissue tolerance) or avoiding (salt exclusion) accumulation of salt in the shoots will assist with management for optimizing yield under declining soil and water resources. Both crops were grown in non-saline (0.0 dS/m) and saline (3.0 dS/m) loamy sand and drip irrigated with water of 0.0, 1.2 or 2.4 dS/m. Differences in the growth and yields of the two crops under saline conditions were associated with uptake and distribution of cations, especially Na. The tomato employed tissue tolerance mechanism in response to salinity and produced fruits even when shoot/root Na concentration was >3.0; concentrations of Na in tomato tissues was in the order shoots > roots ≈ fruits. Okra was sensitive to shoot Na such that a shoot/root Na concentration as low as 0.13 reduced yield by as much as 35%; this crop employed salt exclusion mechanism and minimized shoot accumulation of Na, which was distributed in the order fruits > roots > shoots.Root and shoot concentrations of Na, P and S were correlated with flower abortion and negatively correlated with yield and yield components in both crops. Fresh fruit produced on the saline soil were reduced by 19% in tomato compared with 59% in okra, relative to yields on non-saline soil. Water salinity reduced fresh fruit yields in the tomato by as much as 36% with every unit (dS/m) rise in water salinity compared with 27% in okra. Soil salinity significantly reduced water-use by 6% in tomatoes and 29% in okra, but had no impact on water use efficiency (WUE) that averaged 3.9 g of fresh fruits/L for tomatoes and 1.75 g/L for okra. Every 1.0 dS/m rise in water salinity reduced water-use by 0.33 L in okra and 3.31 L in tomatoes, and reduced WUE by 2.61 g/L in tomatoes and 0.53 g/L in okra. Soil salinity explained <5% of the variance in yields in tomatoes and 10–20% in okra, while water salinity explained 48–68% of the variance in tomatoes and about 40% in okra. We conclude that (1) water salinity was more injurious to yield in both crops than soil salinity, and (2) yield losses due to salinity can be minimized through frequent leaching of soil salt under okra and increased irrigation intervals in tomatoes.

    Related items

    Showing items related by title, author, creator and subject.

    • Plasticity in stomatal density and morphology in okra and tomatoes in response to soil and water salinity
      Kamululdeen, J.; Yunusa, I.; Bruhl, J.; Prychid, C.; Zerihun, Ayalsew (2016)
      Okra (Abelmoschus esculentus) and tomatoes (Lycopersicum esculentum) were grown in saline (3.0 dS m-1 NaCl) and non-saline soil and irrigated with saline (2.4 dS m-1 NaCl) or non-saline water to determine the response of ...
    • Effects of irrigation rate on the growth, yield, nutritive value, and water use efficiency of Carrot (Daucus carota) and Broccoli (Brasiola oleracea)
      Ludong, Daniel Peter M. (2008)
      The effects of differential irrigation treatments on the water use of broccoli (c.v. Indurance) and carrots (c.v. Stefano) were studied in the rainy, winter season from July to September 2006 and in the dry, summer period ...
    • Dryland field validation of genotypic variation in salt tolerance of chickpea (Cicer arietinum L.) determined under controlled conditions
      Turner, N.C.; Quealy, J.; Stefanova, Katia ; Pang, J.; Colmer, T.D.; Siddique, K.H.M. (2022)
      Chickpea (Cicer arietinum L.) is a moderately salt-susceptible grain legume species. Genotypic differences in salt tolerance/susceptibility have been identified in chickpea genotypes grown in adequately-watered soil in ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.