Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Experimental and theoretical rock physics research with application to reservoirs, seals and fluid processes

    Access Status
    Fulltext not available
    Authors
    Dodds, Kevin
    Dewhurst, D.
    Siggins, A.
    Ciz, Radim
    Urosevic, Milovan
    Gurevich, Boris
    Sherlock, Donald
    Date
    2007
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Dodds, Kevin and Dewhurst, D. and Siggins, A. and Ciz, Radim and Urosevic, Milovan and Gurevich, Boris and Sherlock, Donald. 2007. Experimental and theoretical rock physics research with application to reservoirs, seals and fluid processes. Journal of Petroleum Science and Engineering. 57 (1-2): pp. 16-36.
    Source Title
    Journal of Petroleum Science and Engineering
    DOI
    10.1016/j.petrol.2005.10.018
    ISSN
    09204105
    Faculty
    Department of Exploration Geophysics
    Faculty of Science and Engineering
    The Western Australian School of Mines
    Remarks

    The link to the journal’s home page is: http://www.elsevier.com/wps/find/journaldescription.cws_home/503345/description#description

    Copyright © 2007 Elsevier Ltd. All rights reserved

    URI
    http://hdl.handle.net/20.500.11937/15976
    Collection
    • Curtin Research Publications
    Abstract

    This paper describes a range of geophysical research activities at the Australian Resources Research Centre based around the development of an experimental capability to validate theoretical and numerical modelling predictions of geophysical properties of reservoirs and seals. Laboratory tests performed on reservoir sandstones, shales and artificial sandstones under a range of controlled triaxial stress conditions allow the full anisotropic elastic tensor to be calculated from ultrasonic measurements on a single core. The analysis of elastic properties and anisotropy in relation to varied stress, pore pressure and fluid saturation can provide significant insight for both exploration (e.g. pore pressure prediction) and production (4D seismic feasibility studies for changes in pore pressure and saturation during production). Ultrasonic data from core measurements are related to seismic response through theoretical analysis of frequency effects and the methodologies developed from this research are subsequently tested on 3D seismic data. Understanding the causes and degree of anisotropy, for example, are critical for depth conversion, imaging, fluid identification (e.g. AVO) and dynamic Poisson's ratio.Velocity hysteresis observed in shales and sandstones with different stress histories has led to an improved understanding of the concept of effective stress and its effect on seismic data. Positive correlations between effective stress and pore pressure with several instantaneous seismic attributes have been established that allow direct mapping of seismic attribute changes into absolute values of effective stress. This methodology has been tested on a 3D seismic dataset from the Northwest Shelf of Australia and shows good agreement with both the distribution and magnitude of the overpressures present. Similarly, X-ray CT images have been combined with ultrasonic measurements conducted on core samples to establish the sensitivity of instantaneous seismic attributes to various degrees of fluid saturation. These results indicate that seismic attributes can be used as an alternative approach for discrimination between pressure and saturation affects.The results from these combined research activities have improved our understanding of the impact of effective stress, anisotropy and saturation on the interpretation of geophysical data, which has implications for pore pressure prediction, 4D seismic evaluations, depth conversion and stress-saturation discrimination.

    Related items

    Showing items related by title, author, creator and subject.

    • Investigation of pressure and saturation effects on elastic parameters: an integrated approach to improve time-lapse interpretation
      Grochau, Marcos Hexsel (2009)
      Time-lapse seismic is a modern technology for monitoring production-induced changes in and around a hydrocarbon reservoir. Time-lapse (4D) seismic may help locate undrained areas, monitor pore fluid changes and identify ...
    • Theoretical and numerical modelling of the effect of viscous and viscoelastic fluids on elastic properties of saturated rocks
      Makarynska, Dina (2010)
      Rock physics is an essential link connecting seismic data to the properties of rocks and fluids in the subsurface. One of the most fundamental questions of rock physics is how to model the effects of pore fluids on rock ...
    • Elastic properties of carbonates : measurements and modelling
      Bastos de Paula, Osni (2011)
      This thesis is a multi-scale study of carbonate rocks, from the nanoscale and digital rock investigations to the imaging studies of carbonate reservoir analogues. The essential links between these extremes are the carbonate ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.