Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Comprehensive strategy to design highly ordered mesoporous Nafion membranes for fuel cells under low humidity conditions

    Access Status
    Fulltext not available
    Authors
    Zhang, Jin
    Li, J.
    Tang, H.
    Pan, M.
    Jiang, San Ping
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Zhang, J. and Li, J. and Tang, H. and Pan, M. and Jiang, S.P. 2014. Comprehensive strategy to design highly ordered mesoporous Nafion membranes for fuel cells under low humidity conditions. Journal of Materials Chemistry A. 2: 20578-20587.
    Source Title
    Journal of Materials Chemistry A
    DOI
    10.1039/c4ta02722a
    ISSN
    2050-7488
    School
    Department of Petroleum Engineering
    URI
    http://hdl.handle.net/20.500.11937/16006
    Collection
    • Curtin Research Publications
    Abstract

    A comprehensive strategy has been developed to synthesize highly ordered mesoporous Nafion membranes with different structure symmetries including 2D hexagonal (2D-H), 3D face-centered (3D-FC), 3D cubic-bicontinuous (3D-CB) and 3D body-centered (3D-BC), using a soft template method with the assistance of a silica colloidal mediator. The Nafion membrane derived from the self-assembled mesoporous Nafion–silica composites maintained the microstructures of the silica framework, which was confirmed by small angle X-ray scattering (SAXS) and TEM. The in situ time-resolved synchrotron SAXS clearly indicates that the presence of silica colloids is critical for the formation of the highly ordered mesoporous structured phase in the precursor solution. The best results are observed on Nafion membranes with 2D-H structure in terms of proton conductivity and cell performance under reduced relative humidity (RH) conditions, achieving proton conductivities of 0.08, 0.062 and 0.038 S cm1 at 100, 40 and 0%RH, respectively. Moreover, the power output of the mesoporous Nafion membrane cells show a S-shaped dependence on RH and are stable under anhydrous conditions (i.e., 0% RH), demonstrating the outstanding high water retention capability of the mesoporous structure of the membranes.

    Related items

    Showing items related by title, author, creator and subject.

    • Phosphotungstic acid functionalized silica nanocomposites with tunable bicontinuous mesoporous structure and superior proton conductivity and stability for fuel cells
      Zeng, J.; Zhou, Y.; Li, L.; Jiang, San Ping (2011)
      A novel proton exchange membrane using phosphotungstic acid (HPW) as proton carrier and cubic bicontinuous Ia3d mesoporous silica (meso-silica) as framework material is successfully developed as proton exchange membranes ...
    • Mesoporous materials for fuel cells
      Zhang, J.; Jiang, San Ping (2016)
      Fuel cell is the most efficient and environmentally friendly energy conversion technology to directly convert the chemical energy of fuels such as hydrogen, methane, methanol, ethanol and hydrocarbons into electricity ...
    • Anhydrous phosphoric acid functionalized sintered mesoporous silica nanocomposite proton exchange membranes for fuel cells
      Zeng, J.; He, B.; Lamb, K.; De Marco, Roland; Shen, P.; Jiang, San Ping (2013)
      A novel inorganic proton exchange membrane based on phosphoric acid (PA)-functionalized sintered mesoporous silica, PA-meso-silica, has been developed and investigated. After sintering at 650 °C, the meso-silica powder ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.