AdaBoost.MRF: Boosted Markov Random Forests and Application to Multilevel Activity Recognition
dc.contributor.author | Truyen, Tran | |
dc.contributor.author | Phung, Dinh | |
dc.contributor.author | Bui, H. | |
dc.contributor.author | Venkatesh, Svetha | |
dc.contributor.editor | A. Fitzgibbon | |
dc.contributor.editor | C. Taylor | |
dc.contributor.editor | Y. LeCun | |
dc.date.accessioned | 2017-01-30T11:53:39Z | |
dc.date.available | 2017-01-30T11:53:39Z | |
dc.date.created | 2014-10-28T02:31:41Z | |
dc.date.issued | 2006 | |
dc.identifier.citation | Truyen, T. and Phung, D. and Bui, H. and Venkatesh, S. 2006. AdaBoost.MRF: Boosted Markov Random Forests and Application to Multilevel Activity Recognition, in Fitzgibbon, A. and Taylor, C. and LeCun, Y. (ed), IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Jun 17-26 2006, pp. 1686-1693. New York, USA: IEEE Computer Society Conference Publishing Services. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/16060 | |
dc.identifier.doi | 10.1109/CVPR.2006.49 | |
dc.description.abstract |
Activity recognition is an important issue in building intelligent monitoring systems. We address the recognition of multilevel activities in this paper via a conditional Markov random field (MRF), known as the dynamic conditional random field (DCRF). Parameter estimation in general MRFs using maximum likelihood is known to be computationally challenging (except for extreme cases), and thus we propose an efficient boosting-based algorithm AdaBoost.MRF for this task. Distinct from most existing work, our algorithm can handle hidden variables (missing labels) and is particularly attractive for smarthouse domains where reliable labels are often sparsely observed. Furthermore, our method works exclusively on trees and thus is guaranteed to converge. We apply the AdaBoost.MRF algorithmto a home video surveillance application and demonstrate its efficacy. | |
dc.publisher | IEEE Computer Society Conference Publishing Services | |
dc.title | AdaBoost.MRF: Boosted Markov Random Forests and Application to Multilevel Activity Recognition | |
dc.type | Conference Paper | |
dcterms.source.startPage | 1686 | |
dcterms.source.endPage | 1693 | |
dcterms.source.title | 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition | |
dcterms.source.series | 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition | |
dcterms.source.isbn | 0769525970 | |
dcterms.source.conference | IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2006 | |
dcterms.source.conference-start-date | Jun 17 2006 | |
dcterms.source.conferencelocation | New York, USA | |
dcterms.source.place | Los Alamitos, USA | |
curtin.department | Department of Computing | |
curtin.accessStatus | Fulltext not available |