Show simple item record

dc.contributor.authorCaron, F.
dc.contributor.authorDel Moral, P.
dc.contributor.authorPace, M.
dc.contributor.authorVo, Ba-Ngu
dc.date.accessioned2017-01-30T11:54:11Z
dc.date.available2017-01-30T11:54:11Z
dc.date.created2014-07-01T20:00:28Z
dc.date.issued2011
dc.identifier.citationCaron, F. and Del Moral, P. and Pace, M. and Vo, B. 2011. On the Stability and the Approximation of Branching Distribution Flows, with Applications to Nonlinear Multiple Target Filtering. Stochastic Analysis and Applications. 29 (6): pp. 951-997.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/16151
dc.identifier.doi10.1080/07362994.2011.598797
dc.description.abstract

We analyze the exponential stability properties of a class of measure-valued equations arising in nonlinear multi-target filtering problems. We also prove the uniform convergence properties w.r.t. the time parameter of a rather general class of stochastic filtering algorithms, including sequential Monte Carlo type models and mean field particle interpretation models. We illustrate these results in the context of the Bernoulli and the Probability Hypothesis Density filter, yielding what seems to be the first results of this kind in this subject.

dc.publisherTaylor & Francis Inc.
dc.subjectSemigroup stability
dc.subjectFunctional contraction inequalities
dc.subjectNonlinear multi-target filtering
dc.subjectInteracting particle systems
dc.subjectParticle filters
dc.subjectProbability hypothesis density filter
dc.subjectBernoulli filter
dc.titleOn the Stability and the Approximation of Branching Distribution Flows, with Applications to Nonlinear Multiple Target Filtering
dc.typeJournal Article
dcterms.source.volume29
dcterms.source.number6
dcterms.source.startPage951
dcterms.source.endPage997
dcterms.source.issn0736-2994
dcterms.source.titleStochastic Analysis and Applications
curtin.department
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record