Time-domain and spectral properties of pulsars at 154 MHz
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2016 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Collection
Abstract
We present 154 MHz Murchison Widefield Array imaging observations and variability information for a sample of pulsars. Over the declination range −80° < δ < 10°, we detect 17 known pulsars with mean flux density greater than 0.3 Jy. We explore the variability properties of this sample on time-scales of minutes to years. For three of these pulsars, PSR J0953+0755, PSR J0437−4715, and PSR J0630−2834, we observe interstellar scintillation and variability on time-scales of greater than 2 min. One further pulsar, PSR J0034−0721, showed significant variability, the physical origins of which are difficult to determine. The dynamic spectra for PSR J0953+0755 and PSR J0437−4715 show discrete time and frequency structure consistent with diffractive interstellar scintillation and we present the scintillation bandwidth and time-scales from these observations. The remaining pulsars within our sample were statistically non-variable. We also explore the spectral properties of this sample and find spectral curvature in pulsars PSR J0835−4510, PSR J1752−2806, and PSR J0437−4715.
Related items
Showing items related by title, author, creator and subject.
-
Shannon, R.; Oslowski, S.; Dai, S.; Bailes, M.; Hobbs, G.; Manchester, R.; van Straten, W.; Raithel, C.; Ravi, V.; Toomey, L.; Bhat, Ramesh; Burke-Spolaor, S.; Coles, W.; Keith, M.; Kerr, M.; Levin, Y.; Sarkissian, J.; Wang, J.; Wen, L.; Zhu, X. (2014)High-sensitivity radio-frequency observations of millisecond pulsars usually show stochastic, broad-band, pulse-shape variations intrinsic to the pulsar emission process. These variations induce jitter noise in pulsar ...
-
Lentati, L.; Kerr, M.; Dai, S.; Shannon, Ryan; Hobbs, G.; Oslowski, S. (2017)We present a robust approach to incorporating models for the time-variable broadening of the pulse profile due to scattering in the ionized interstellar medium into profile-domain pulsar timing analysis. We use this ...
-
Manchester, R.; Hobbs, G.; Bailes, M.; Coles, W.; van Straten, W.; Keith, M.; Shannon, R.; Bhat, Ramesh; Brown, A.; Burke-Spolaor, S.; Champion, D.; Chaudhary, A.; Edwards, R.; Hampson, G.; Hotan, A.; Jameson, A.; Jenet, F.; Kesteven, M.; Khoo, J.; Kocz, J.; Maciesiak, K.; Oslowski, S.; Ravi, V.; Reynolds, J.; Sarkissian, J.; Verbiest, J.; Wen, Z.; Wilson, W.; Yardley, D.; Yan, W.; You, X. (2013)A ‘pulsar timing array’ (PTA), in which observations of a large sample of pulsars spread across the celestial sphere are combined, allows investigation of ‘global’ phenomena such as a background of gravitational waves or ...