Catalytic reforming of tar during gasification. Part III. Effects of feedstock on tar reforming using ilmenite as a catalyst
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Australia mallee wood, bark and leaf samples (Eucalyptus loxophleba, subspecies lissophloia) werepyrolyzed to produce volatiles for in situ catalytic steam reforming with ilmenite as a catalyst. The results demonstrated that the properties of biomass feedstock (wood, bark and leaves) significantly influenced their product yields and properties. Bark produced the highest amounts of solid products, whereas leaf generated the highest amounts of tar during pyrolysis. The differences in the chemical composition and the tar yields among wood, bark and leaf decreased with increasing temperature. It is also found that ilmenite showed good activity for the reforming of all tars from different parts of mallee trees. However, its activity for reforming tar from bark and leaf decreased with prolonging feeding time due to their high gradual coke deposits. Compared with sintering, the accumulated coke deposited on ilmenite is a dominant factor to its deactivation during the steam reforming process. Burning coke is an effective method to regenerate the catalyst activity of ilmenite.
Related items
Showing items related by title, author, creator and subject.
-
Min, Z.; Lin, J.; Yimsiri, P.; Asadullah, M.; Li, Chun-Zhu (2013)A char-supported iron catalyst was investigated as a catalyst for destructing the NOx precursors (e.g. HCN and NH3) during the catalytic steam reforming of tar derived from the pyrolysis of mallee bark and leaf. It was ...
-
Burton, A.; Wu, Hongwei (2015)This paper reports the significant differences in bed agglomeration behavior during the fast pyrolysis of various mallee biomass components (leaf, wood, and bark) in a fluidized-bed reactor at 500 °C. The pyrolysis of ...
-
Min, Zhenhua (2010)Biomass has become an increasingly important renewable source of energy forenhanced energy security and reduced CO[subscript]2 emissions. Gasification is at the core of many biomass utilisation technologies for such ...