Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Solubility properties and diffusional extraction behavior of natamycin from streptomyces gilvosporeus biomass

    Access Status
    Fulltext not available
    Authors
    Zeng, X.
    Danquah, Michael
    Jing, K.
    Woo, M.
    Chen, X.
    Xie, Y.
    Lu, Y.
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Zeng, X. and Danquah, M. and Jing, K. and Woo, M. and Chen, X. and Xie, Y. and Lu, Y. 2013. Solubility properties and diffusional extraction behavior of natamycin from streptomyces gilvosporeus biomass. Biotechnology Progress. 29 (1): pp. 109-115.
    Source Title
    Biotechnology Progress
    DOI
    10.1002/btpr.1659
    ISSN
    8756-7938
    School
    Curtin Sarawak
    URI
    http://hdl.handle.net/20.500.11937/16510
    Collection
    • Curtin Research Publications
    Abstract

    Natamycin is a type of polyene macrolide antibiotic and has been produced in submerged microbial cultures of some natural Streptomyces strains. Natamycin extraction from cellular biomass is greatly affected by the molecular and solubilization characteristics of the extraction solvent, and this is a major reason for the routine attainment of low volumetric titers, resulting from sparing natamycin solubility. In this work, a series of experiments were conducted to investigate the solubility of natamycin in some selected organic solvents in order to assess the influence on natamycin extraction yield. Natamycin showed the highest solubility in 75% aqueous methanol under the conditions of pH 2, 30°C and 1 atm. Furthermore, the extraction of natamycin using 75% aqueous methanol was performed and the highest extraction yield of 45.7% was obtained under pH 2. A mathematical model derived from Fick's law of the biomolecular diffusion process was developed to fit the experimental kinetic data of natamycin extraction.

    Related items

    Showing items related by title, author, creator and subject.

    • The solvent extraction behaviour of chromium with Bis (2,4,4-trimethylpentyl) phosphinic acid (Cyanex [R] 272)
      Lanagan, Matthew D. (2003)
      The bulk of the world's known nickel reserves are contained in laterite ores but sulphidic ores remain the main source of the Western world's nickel production. With the continuing increase in nickel consumption and the ...
    • Extraction and separation of cobalt from acidic nickel laterite leach solutions using electrostatic pseudo liquid membrane (ESPLIM)
      Heckley, Philip Scott (2002)
      Approximately 70% of the western world's known nickel reserves are contained in laterite ores, but only 30% of the world's nickel production comes from these ores. This is due to the lack of economically viable technology ...
    • Phosphorus bioavailability from land-applied biosolids in south-western Australia
      Pritchard, Deborah Leeanne (2005)
      The annual production of biosolids in the Perth region during the period of this study was approximately 13,800 t dry solids (DS), being supplied by three major wastewater treatment plants. Of this, 70% was typically used ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.