The effects of phenoxodiol on the cell cycle of prostate cancer cell lines
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
This article is published under the Open Access publishing model and distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/. Please refer to the licence to obtain terms for any further reuse or distribution of this work.
Collection
Abstract
Background: Prostate cancer is associated with a poor survival rate. The ability of cancer cells to evade apoptosis and exhibit limitless replication potential allows for progression of cancer from a benign to a metastatic phenotype. The aim of this study was to investigate in vitro the effect of the isoflavone phenoxodiol on the expression of cell cycle genes. Methods: Three prostate cancer cell lines-LNCaP, DU145, and PC3 were cultured in vitro, and then treated with phenoxodiol (10 μM and 30 μM) for 24 and 48 h. The expression of cell cycle genes p21WAF1, c-Myc, Cyclin-D1, and Ki-67 was investigated by Real Time PCR. Results: Here we report that phenoxodiol induces cell cycle arrest in the G1/S phase of the cell cycle, with the resultant arrest due to the upregulation of p21WAF1 in all the cell lines in response to treatment, indicating that activation of p21WAF1 and subsequent cell arrest was occurring via a p53 independent manner, with induction of cytotoxicity independent of caspase activation. We found that c-Myc and Cyclin-D1 expression was not consistently altered across all cell lines but Ki-67 signalling expression was decreased in line with the cell cycle arrest. Conclusions: Phenoxodiol demonstrates an ability in prostate cancer cells to induce significant cytotoxicity in cells by interacting with p21WAF1 and inducing cell cycle arrest irrespective of p53 status or caspase pathway interactions. These data indicate that phenoxodiol would be effective as a potential future treatment modality for both hormone sensitive and hormone refractory prostate cancer.
Related items
Showing items related by title, author, creator and subject.
-
Mahoney, S.; Arfuso, Frank; Millward, M.; Dharmarajan, Arunasalam (2014)Although much progress has been made for the treatment of prostate cancer, patients with advanced prostate cancer still have a poor 5 year survival rate. Current practices for hormone-refractory/castrate resistant, ...
-
Shanmugam, M.; Manu, K.; Ong, T.; Ramachandran, L.; Surana, R.; Bist, P.; Lim, L.; Kumar, Alan Prem; Hui, K.; Sethi, G. (2011)Increasing evidences indicate that CXCR4/CXCL12 signaling pathway plays a pivotal role in the process of distant site metastasis that accounts for more than 90% of prostate cancer related deaths in patients. Thus, novel ...
-
Chikh, A.; Ferro, R.; Abbott, J.; Piñeiro, R.; Buus, R.; Iezzi, M.; Ricci, F.; Bergamaschi, D.; Ostano, P.; Chiorino, G.; Lattanzio, R.; Broggini, M.; Piantelli, M.; Maffucci, T.; Falasca, Marco (2016)It is now well established that the enzymes phosphoinositide 3-kinases (PI3Ks) have a key role in the development and progression of many cancer types and indeed PI3Ks inhibitors are currently being tested in clinical ...