Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Starburst and old stellar populations in the z -~ 3.8 radio galaxies 4c 41.17 and TN J2007-1316

    236184_236184.pdf (913.9Kb)
    Access Status
    Open access
    Authors
    Rocca-Volmerange, B.
    Drouart, G.
    De Breuck, C.
    Vernet, J.
    Seymour, Nick
    Wylezalek, D.
    Lehnert, M.
    Nesvadba, N.
    Fioc, M.
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Rocca-Volmerange, B. and Drouart, G. and De Breuck, C. and Vernet, J. and Seymour, N. and Wylezalek, D. and Lehnert, M. et al. 2013. Starburst and old stellar populations in the z -~ 3.8 radio galaxies 4c 41.17 and TN J2007-1316. Monthly Notices of the Royal Astronomical Society. 429 (4): pp. 2780-2790.
    Source Title
    Monthly Notices of the Royal Astronomical Society
    DOI
    10.1093/mnras/sts413
    ISSN
    0035-8711
    School
    Department of Physics and Astronomy
    Remarks

    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

    URI
    http://hdl.handle.net/20.500.11937/16595
    Collection
    • Curtin Research Publications
    Abstract

    Using the new evolutionary code Pégase.3, we undertook an evolutionary spectral synthesis of the optical–IR–submm spectral energy distribution of two distant (z = 3.8) radio galaxies, 4C 41.17 and TN J2007−1316. These two radio galaxies were selected from the HeRGÉ (Herschel Radio Galaxies Evolution) Project in particular for their faint active galactic nucleus contribution and because they show evidence of a large stellar contribution to their bolometric luminosity. Pégase.3 coherently models the reprocessing of the stellar luminosity to dust emission, allowing us to build UV to IR–submm spectral energy distribution libraries that can then be used to fit spectral energy distributions in the observer's frame. Our principal conclusion is that a single stellar population is insufficient to fit the spectral energy distribution of either radio galaxy. Our best fits are a sum of two evolving stellar populations – a recent starburst plus an old population – plus the thermal emission from an active galactic nucleus (which provides a good fit to the mid-IR emission). The two stellar components are: (i) a massive -~ 1011  M☉) starburst -~30 Myr after formation, which is required simultaneously to fit the far-IR Herschel to submm data and the optical data; and (ii) an older massive (-~ 1011–12  M☉) early-type galaxy population,-~1.0 Gyr old, which is required principally to fit the mid-IR Spitzer/IRAC data.A young population alone is insufficient because an evolved giant star population produces a 1-μm rest-frame peak that is observed in the IRAC photometry. This discovery confirms that many of the stellar populations in high-redshift radio galaxies were formed by massive starbursts in the early Universe. Gas-rich mergers and/or jet–cloud interactions are favoured for triggering the intense star formation necessary to explain the properties of the spectral energy distributions. The discovery of similar characteristics in two distant radio galaxies suggests that multiple stellar populations, one old and one young, may be a generic feature of the luminous infrared radio galaxy population.

    Related items

    Showing items related by title, author, creator and subject.

    • (Sub)millimetre interferometric imaging of a sample of COSMOS/AzTEC submillimetre galaxies: IV. Physical properties derived from spectral energy distributions
      Miettinen, O.; Delvecchio, I.; Smolcic, V.; Novak, M.; Aravena, M.; Karim, A.; Murphy, E.; Schinnerer, E.; Capak, P.; Ilbert, O.; Intema, Hubertus; Laigle, C.; McCracken, H. (2017)
      Context. Submillimetre galaxies (SMGs) in the early Universe are potential antecedents of the most massive galaxies we see in the present-day Universe. An important step towards quantifying this galactic evolutionary ...
    • An ALMA survey of submillimetre galaxies in the COSMOS field: Physical properties derived from energy balance spectral energy distribution modelling
      Miettinen, O.; Delvecchio, I.; Smolcic, V.; Aravena, M.; Brisbin, D.; Karim, A.; Magnelli, B.; Novak, M.; Schinnerer, E.; Albrecht, M.; Aussel, H.; Bertoldi, F.; Capak, P.; Casey, C.; Hayward, C.; Ilbert, O.; Intema, Hubertus; Jiang, C.; Le Fèvre, O.; McCracken, H.; Munõz Arancibia, A.; Navarrete, F.; Padilla, N.; Riechers, D.; Salvato, M.; Scott, K.; Sheth, K.; Tasca, L. (2017)
      Context. Submillimetre galaxies (SMGs) represent an important source population in the origin and cosmic evolution of the most massive galaxies. Hence, it is imperative to place firm constraints on the fundamental physical ...
    • A CO-rich merger shaping a powerful and hyperluminous infrared radio galaxy at z = 2: The Dragonfly Galaxy
      Emonts, B.; Mao, M.; Stroe, A.; Pentericci, L.; Villar-Martín, M.; Norris, R.; Miley, G.; De Breuck, C.; Van Moorsel, G.; Lehnert, M.; Carilli, C.; Röttgering, H.; Seymour, Nick; Sadler, E.; Ekers, R.; Drouart, G.; Feain, I.; Colina, L.; Stevens, J.; Holt, J. (2015)
      In the low-redshift Universe, the most powerful radio sources are often associated with gas-rich galaxy mergers or interactions. We here present evidence for an advanced, gas-rich (‘wet’) merger associated with a powerful ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.