Excavation of the lunar mantle by basin-forming events on the Moon
Citation
Source Title
ISSN
School
Collection
Abstract
© 2014 Elsevier B.V. Global maps of crustal thickness on the Moon, derived from gravity measurements obtained by NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission, have shown that the lunar crust is thinner than previously thought. Hyperspectral data obtained by the Kaguya mission have also documented areas rich in olivine that have been interpreted as material excavated from the mantle by some of the largest lunar impact events. Numerical simulations were performed with the iSALE-2D hydrocode to investigate the conditions under which mantle material may have been excavated during large impact events and where such material should be found. The results show that excavation of the mantle could have occurred during formation of the several largest impact basins on the nearside hemisphere as well as the Moscoviense basin on the farside hemisphere. Even though large areas in the central portions of these basins were later covered by mare basaltic lava flows, surficial lunar mantle deposits are predicted in areas external to these maria. Our results support the interpretation that the high olivine abundances detected by Kaguya spacecraft could indeed be derived from the lunar mantle.
Related items
Showing items related by title, author, creator and subject.
-
Garrick-Bethell, I.; Miljkovic, Katarina ; Hiesinger, H.; van der Bogert, C.H.; Laneuville, M.; Shuster, D.L.; Korycansky, D.G. (2020)© 2019 Elsevier Inc. Lunar samples returned by the Apollo program have provided insights into numerous solar system processes. However, no samples were returned from the lunar farside, where one of the Moon's most ...
-
Lemelin, M.; Lucey, P.; Miljkovic, Katarina; Gaddis, L.; Hare, T.; Ohtake, M. (2018)The innermost ring in impact basins exposes material originating from various depths, and can be used to study the composition of the lunar crust with depth. In this study, we conduct quantitative mineralogical analyses ...
-
Bellucci, J.; Nemchin, Alexander; Grange, M.; Robinson, K.; Collins, G.; Whitehouse, M.; Snape, J.; Norman, M.; Kring, D. (2019)A felsite clast in lunar breccia Apollo sample 14321, which has been interpreted as Imbrium ejecta, has petrographic and chemical features that are consistent with formation conditions commonly assigned to both lunar and ...