Petrological characterization and reactive transport simulation of a high-water-cut oil reservoir in the Southern Songliao Basin, Eastern China for CO2 sequestration
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
CO2 geological sequestration (CGS) in depleted or high-water-cut oil reservoirs is a viable option for reducing anthropogenic CO2 emissions and enhancing oil recovery. The Upper Cretaceous Qingshankou Formation in the central Changling (fault) Depression, Songliao Basin, East China is the selected site for a pilot injection of the CO2 INJECTION project. The target reservoir depth is about 2400–2500 m. Lithologic features and diagenetic minerals of the reservoir and cap rocks have been investigated by optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). In the Qingshankou Formation, the reservoir rock is a typical arkose with moderately to good sorting, and very fine to fine grain sizes. Minerallogically it is dominated by quartz (19–31 vol.%), plagioclase (19–28 vol.%), and K-feldspar (2–26 vol.%). Calcite and ankerite constitute the most common diagenetic minerals. The lithology of the cap rock is mainly silty mudstone and composed of quartz (average of 12.9–27.0 wt.%), albite (14.2–35.5 wt.%), K-feldspar (1.3–2.7 wt.%), mixed-layer illite/smectite (24.9–68.8 wt.%), chlorite (3.15–14.7 wt.%) and some kaolinite. The main antigenic minerals in the CO2 INJECTION well are made up of albite (average of 29.7 wt.%), K-feldspar (average of 4.5 wt.%), calcite (average of 7.5 wt.%) and ankerite (average of 9.1 wt.%).To assess the long-term CO2 EOR-related fluid–rock interaction processes and evaluate the safety of CO2 geological storage in the Qingshankou Formation, reactive geochemical transport simulations using a simple 2D model were performed. The simulation results show that (1) the migration of free CO2 plume did not penetrate the low permeability cap rock after 800 years; (2) ankerite and dawsonite are the major sequestration minerals after CO2 injection, while albite, K-feldspar and calcite are the major dissolution minerals; (3) the sandstone permeability appears to have been reduced more significantly compared to porosity changes after CO2 injection; (4) 800 years after CO2 injection the amounts of CO2 trapped as residual free gas, dissolved gas and solid minerals are 10%, 74% and 16%, respectively; and (5) a dense carbonate crust is formed at the sandstone–mudstone boundary after CO2 injection, which can effectively retard the spread of CO2 into the cap rock. The results of our study provide basic geological information for CO2 trapping mechanisms in high-water-cut oil reservoirs, as well as a safety evaluation of CO2 geological storage resulting from massive injections of CO2 into reservoirs during EOR programs.
Related items
Showing items related by title, author, creator and subject.
-
Yu, Z.; Liu, Keyu; Liu, L.; Yang, S.; Yang, Y. (2017)© 2017. American Geophysical Union. All Rights Reserved. To understand the mineralogical and chemical changes in oil-bearing reservoirs (e.g., depleted oil reservoirs) during massive CO2 injection, we have carried out a ...
-
Zametzer, Andreas ; Kirkland, Chris ; Barham, Milo ; Smithies, R. Hugh; Huston, D.L.; Champion, D.C. (2023)Various geological processes that affect Earth's crust may be encoded into isotopic tracers preserved in rocks and minerals. The enhanced sensitivity of U, Th, and Pb to crustal fractionation processes allows Pb isotopes ...
-
Zametzer, Andreas; Kirkland, Christopher ; Hartnady, Michael ; Barham, Milo ; Champion, D.C.; Bodorkos, S.; Smithies, R. Hugh; Johnson, S.P. (2022)The isotopic composition of Pb in a mineral or rock at the moment it formed – often referred to as common Pb – provides an important tool to track geological processes through time and space. There is a wide range of ...