A new exact penalty function approach to semi-infinite programming problem
dc.contributor.author | Yu, Changjun | |
dc.contributor.author | Teo, Kok Lay | |
dc.contributor.author | Zhang, L. | |
dc.contributor.editor | Themistocles M. Rassias | |
dc.contributor.editor | Christodoulos A. Floudas | |
dc.contributor.editor | Sergiy Butenko | |
dc.date.accessioned | 2017-01-30T11:57:12Z | |
dc.date.available | 2017-01-30T11:57:12Z | |
dc.date.created | 2014-12-18T20:00:32Z | |
dc.date.issued | 2014 | |
dc.identifier.citation | Yu, C. and Teo, K. and Zhang, L. 2014. A new exact penalty function approach to semi-infinite programming problem, in Rassias, T. and Floudas, C. and Butenko, S. (ed), Optimization in Science and Engineering, pp. 583-596. New York: Springer. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/16689 | |
dc.identifier.doi | 10.1007/978-1-4939-0808-0_28 | |
dc.description.abstract |
In this paper, we propose a new exact penalty function method for solving a class of semi-infinite programming problems (SIPs). We introduce a logarithmic form function of the constraint violation, where the constraint violation is a measure of the violation of the constraints of the current iterate. By appending it to the objective function, we obtain a sequence of approximate conventional unconstrained optimization problem. It is proved that when the penalty parameter is sufficiently large, any local minimizer of the approximate problem is a local minimizer of the original problem. Numerical results show that the proposed method is effective. | |
dc.publisher | Springer | |
dc.title | A new exact penalty function approach to semi-infinite programming problem | |
dc.type | Book Chapter | |
dcterms.source.startPage | 583 | |
dcterms.source.endPage | 596 | |
dcterms.source.title | Optimization in Science and Engineering | |
dcterms.source.isbn | 9781493908073 | |
dcterms.source.place | New York | |
dcterms.source.chapter | 28 | |
curtin.department | Department of Mathematics and Statistics | |
curtin.accessStatus | Fulltext not available |