Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Robust CO2 and H2 resistant triple-layered (Ag-YSZ)/YSZ/(La0.8Sr0.2MnO3-δ-YSZ) hollow fiber membranes with short-circuit for oxygen permeation

    Access Status
    Fulltext not available
    Authors
    Meng, X.
    Sunarso, J.
    Jin, Y.
    Bi, X.
    Yang, N.
    Tan, X.
    Wang, S.
    Liu, Shaomin
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Meng, X. and Sunarso, J. and Jin, Y. and Bi, X. and Yang, N. and Tan, X. and Wang, S. et al. 2017. Robust CO2 and H2 resistant triple-layered (Ag-YSZ)/YSZ/(La0.8Sr0.2MnO3-δ-YSZ) hollow fiber membranes with short-circuit for oxygen permeation. Journal of Membrane Science. 524: pp. 596-603.
    Source Title
    Journal of Membrane Science
    DOI
    10.1016/j.memsci.2016.11.071
    ISSN
    0376-7388
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/16721
    Collection
    • Curtin Research Publications
    Abstract

    Oxygen selective ceramic membranes have many important applications, not only for air separation but also as membrane reactors for cost-effective chemical synthesis. However, the prerequisite to realize these potentials is their stability in the presence of acid gases of CO2 and reducing atmosphere containing H2 and CH4. This work seeks to validate the applicability of robust triple layer hollow fiber membranes consisting of (Ag+YSZ)/YSZ/La0.8Sr0.2MnO3-δ (LSM)+YSZ to separate O2 from air in the presence of these unavoidable gases for more advanced applications. To prepare the triple layer hollow fiber, the dual-layer fiber was firstly synthesized via a combined phase inversion and sintering method where the dense YSZ layer was present on top of the porous LSM-YSZ layer. We further deposited either porous Ag or its mixture with YSZ layer above the dense YSZ surface. The final fiber consists of three layers in sequence from outside surface to inside surface of Ag+YSZ/YSZ/LSM+YSZ. The dense central YSZ layer acts as the ionic conducting phase to prevent gas diffusion while the other two porous layers serve as the electronic conducting phase with catalytic effect to enhance the surface reaction kinetics. To overcome the electronic conductivity limitation of YSZ, silver (Ag) short circuit paste was additionally used to seal the membrane and electronically connect the outer and inner surfaces for electron shuttle for the two surface O2 exchange reactions. Ag-YSZ coated fiber performed better than Ag coated fiber and showed increasing fluxes from 0.1 to 0.53 mL min−1 cm−2 upon increasing temperature from 700 to 900 °C. The O2 fluxes remained constant irrespective of changing the sweep gas from pure He to its mixtures containing CO2, H2, or CH4; mirroring the membrane robustness to tolerate these gases at high temperatures.

    Related items

    Showing items related by title, author, creator and subject.

    • Optimizing Oxygen Transport Through La0.6Sr0.4Co0.2Fe0.8O3-δ Hollow Fiber by Microstructure Modification and Ag/Pt Catalyst Deposition
      Han, D.; Sunarso, J.; Tan, X.; Yan, Z.; Liu, Lihong; Liu, Shaomin (2012)
      This work compares the oxygen permeation fluxes of five different La0.6Sr0.4Co0.2Fe0.8O3−δ membranes (e.g. disk, conventional hollow fiber, modified hollow fiber, Ag- or Pt-deposited hollow fiber membranes) to elucidate ...
    • The development of a rigorous nanocharacterization scheme for electrochemical systems
      Veder, Jean-Pierre M. (2010)
      This thesis reports on a methodology for the nanocharacterization of complex electrochemical systems. A series of powerful techniques have been adapted and applied to studies of two scientifically important electrochemical ...
    • Synthesis of polymeric nanocomposite membranes for aqueous and non-aqueous media
      Rajaeian, Babak (2012)
      Thin film composite (TFC) membranes have long been used by many large-scale applications (i.e., water and wastewater treatment). Recently, conventional polymeric TFC membranes are facing with short longevity due to high ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.