Morphology-dependent performance of Zn2GeO4 as a high-performance anode material for rechargeable lithium ion batteries
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
In this study, the electrochemical performance of hollow Zn2GeO4 nanoparticles as an anode material for lithium-ion batteries (LIBs) has for the first time been investigated and compared to other morphology-type Zn2GeO4 materials with a solid nanorod structure. The results show that the lithium-storage performance is morphology-dependent and the presence of hollow voids is beneficial to enhance the charge–discharge capacity at different current densities. Specifically, the capacity of hollow Zn2GeO4 nanoparticles is approximately 200 mA h g−1 higher than that of Zn2GeO4 solid nanorods after 60 discharge–charge cycles at a current density of 200 mA h g−1 and such high performance (ca. 1200 mA h g−1) is in the front rank of current anode materials and three times as high as that of commercial graphite-based anodes (372 mA h g−1). Moreover, hollow Zn2GeO4 nanoparticles show better rate capacity and the specific capacity is approximately 300 mA h g−1 higher at a current density of 2000 mA h g−1 in comparison with Zn2GeO4 nanorods. The hollow voids not only lower the charge transfer resistance by facilitating lithium-ion diffusion, but also effectively buffer against local volume changes. Therefore, considering the easy and environmentally friendly synthesis and the high performance (high reversible capacity and good rate capacity), such hollow Zn2GeO4 nanoparticles are a very promising candidate as a high-performance anode material for LIBs.
Related items
Showing items related by title, author, creator and subject.
-
Yuan, T.; Zhao, B.; Cai, R.; Zhou, Y.; Shao, Zongping (2011)Film electrodes composed of 1D TiO2 or TiO2/Ag composite hollow fibers were fabricated by a coaxial electrospinning technique, and were applied as the anode of lithium-ion batteries free of any binder or conductive additive. ...
-
Ni, T.; Zhong, Y.; Sunarso, J.; Zhou, W.; Cai, R.; Shao, Zongping (2016)ZnMn2O4 spinel is a promising anode material for lithium-ion batteries (LIBs) which can utilize both conversion reaction and alloying reaction to provide its lithium storage capacity. In this study, we developed hierarchical ...
-
Liu, Yu ; He, Shuai; Zhong, Yijun ; Xu, Xiaomin ; Shao, Zongping (2019)The spinel oxide NiCo2O4 is regarded as a desirable electrode material in lithium-ion batteries with high performance due to its better electrochemical activity and higher capacity compared to traditional simple oxides. ...