γ-tocotrienol inhibits angiogenesis-dependent growth of human hepatocellular carcinoma through abrogation of AKT/mTOR pathway in an orthotopic mouse model
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
Additional URLs
ISSN
School
Remarks
This article is published under the Open Access publishing model and distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/. Please refer to the licence to obtain terms for any further reuse or distribution of this work.
Collection
Abstract
Angiogenesis is one of the key hallmarks of cancer. In this study, we investigated whether γ-tocotrienol can abrogate angiogenesis-mediated tumor growth in hepatocellular carcinoma (HCC) and if so, through what molecular mechanisms. We observed that γ-tocotrienol inhibited vascular endothelial growth factor (VEGF)-induced migration, invasion, tube formation and viability of HUVECs in vitro. Moreover, γ-tocotrienol reduced the number of capillary sprouts from matrigel embedded rat thoracic aortic ring in a dose-dependent manner. Also, in chick chorioallantoic membrane assay, γ-tocotrienol significantly reduced the blood vessels formation. We further noticed that γ-tocotrienol blocked angiogenesis in an in vivo matrigel plug assay. Furthermore, γ-tocotrienol inhibited VEGF-induced autophosphorylation of VEGFR2 in HUVECs and also suppressed the constitutive activation of AKT/mammalian target of rapamycin (mTOR) signal transduction cascades in HUVECs as well as in HCC cells. Interestingly, γ-tocotrienol was also found to significantly reduce the tumor growth in an orthotopic HCC mouse model and inhibit tumor-induced angiogenesis in HCC patient xenografts through the suppression of various biomarkers of proliferation and angiogenesis. Taken together, our findings strongly suggest that γ-tocotrienol might be a promising anti-angiogenic drug with significant antitumor activity in HCC.
Related items
Showing items related by title, author, creator and subject.
-
Rajendran, P.; Li, F.; Manu, K.; Shanmugam, M.; Loo, S.; Kumar, Alan Prem; Sethi, G. (2011)BACKGROUND AND PURPOSE Activation of signal transducer and activator of transcription 3 (STAT3) play a critical role in the survival, proliferation, angiogenesis and chemoresistance of tumour cells. Thus, agents that ...
-
Manu, K.; Shanmugam, M.; Ramachandran, L.; Li, F.; Fong, C.; Kumar, Alan Prem; Tan, P.; Sethi, G. (2012)Purpose: Because of poor prognosis and development of resistance against chemotherapeutic drugs, the existing treatment modalities for gastric cancer are ineffective. Hence, novel agents that are safe and effective are ...
-
Shanmugam, M.; Warrier, S.; Kumar, A.; Sethi, G.; Arfuso, Frank (2017)BACKGROUND: Neovascularization, also known as angiogenesis, is the process of capillary sprouting from pre-existing blood vessels. This physiological process is a hallmark event in normal embryonic development as blood ...