Variable selection methods for multiple regressions influence the parsimony of risk prediction models for cardiac surgery
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Objective: To compare the impact of different variable selection methods in multiple regression to develop a parsimonious model for predicting postoperative outcomes of patients undergoing cardiac surgery. Methods: Data from 84,135 patients in the Australian and New Zealand Society of Cardiac and Thoracic Surgeons registry between 2001 and 2014 were analyzed. Primary outcome was 30-day-mortality. Mixed-effect logistic regressions were used to build the model. Missing values were imputed by the use of multiple imputations. The following 5 variable selection methods were compared: bootstrap receiver-operative characteristic (ROC), bootstrap Akaike information criteria, bootstrap Bayesian information criteria, and stepwise forward and stepwise backward methods. The final model's prediction performance was evaluated by the use of Frank Harrell's calibration curve and using a multifold cross-validation approach. Results: Stepwise forward and backward methods selected same set of 21 variables into the model with the area under the ROC (AUC) of 0.8490. The bootstrap ROC method selected 13 variables with AUC of 0.8450. Bootstrap Bayesian information criteria and Akaike information criteria respectively selected 16 (AUC: 0.8470) and 23 (AUC: 0.8491) variables. Bootstrap ROC model was selected as the final model which showed very good discrimination and calibration power. Conclusions: Clinical suitability in terms of parsimony and prediction performance can be achieved substantially by using the bootstrap ROC method for the development of risk prediction models.
Related items
Showing items related by title, author, creator and subject.
-
Reid, Christopher; Billah, B.; Dinh, D.; Smith, J.; Skillington, P.; Yii, M.; Seevanayagam, S.; Mohajeri, M.; Shardey, G. (2009)Objective: Our objective was to identify risk factors associated with 30-day mortality after isolated coronary artery bypass grafting in the Australian context and to develop a preoperative model for 30-day mortality risk ...
-
Billah, B.; Reid, Christopher; Shardey, G.; Smith, J. (2010)Background: Population-specific risk models are required to build consumer and provider confidence in clinical service delivery, particularly when the risks may be life-threatening. Cardiac surgery carries such risks. ...
-
Sahle, B.; Owen, A.; Wing, L.; Nelson, M.; Jennings, G.; Reid, Christopher (2017)© American Journal of Hypertension, Ltd 2016. All rights reserved.BACKGROUND Multivariable risk prediction models consisting of routinely collected measurements can facilitate early detection and slowing of disease ...