Show simple item record

dc.contributor.authorBudhaditya, S.
dc.contributor.authorPham, DucSon
dc.contributor.authorPhung, D.
dc.contributor.authorVenkatesh, S.
dc.contributor.editorJoydeep Ghosh
dc.contributor.editorZoran Obradovic
dc.date.accessioned2017-01-30T11:59:01Z
dc.date.available2017-01-30T11:59:01Z
dc.date.created2014-02-06T20:00:33Z
dc.date.issued2013
dc.identifier.citationBudhaditya, Saha and Pham, Duc Son and Phung, Dinh and Venkatesh, Svetha. 2013. Sparse Subspace Clustering via Group Sparse Coding, in Ghosh, J., Obradovic, Z., Dy, J., Zhoou, Z., Kamath, C., Parthasarathy, S. (ed), Proceedings of the 2013 SIAM International Conference on Data Mining, May 2-4 2013, pp. 130-138. Austin, Texas, USA: SIAM.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/16995
dc.identifier.doi10.1137/1.9781611972832.15
dc.description.abstract

We propose in this paper a novel sparse subspace clustering method that regularizes sparse subspace representation by exploiting the structural sharing between tasks and data points via group sparse coding. We derive simple, provably convergent, and computationally efificient algorithms for solving the proposed group formulations. We demonstrate the advantage of the framework on three challenging benchmark datasets ranging from medical record data to image and text clustering and show that they consistently outperform rival methods.

dc.publisherSIAM
dc.subjectdata mining
dc.subjectsparsity learning
dc.subjectsparse subspace clustering
dc.subjectoptimization
dc.subjectregularization
dc.titleSparse Subspace Clustering via Group Sparse Coding
dc.typeConference Paper
dcterms.source.startPage130
dcterms.source.endPage138
dcterms.source.titleProceedings of the SIAM International Conference on Data Mining (SDM)
dcterms.source.seriesProceedings of the SIAM International Conference on Data Mining (SDM)
dcterms.source.isbn9781611972627
dcterms.source.conferenceSIAM International Conference on Data Mining (SDM)
dcterms.source.conference-start-dateMay 2 2013
dcterms.source.conferencelocationAustin, Texas, USA
dcterms.source.placeUSA
curtin.note

NOTICE: This is the author’s version of a work in which changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication.

curtin.note

Copyright © 2013 Society for Industrial and Applied Mathematics

curtin.department
curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record