Fire-adapted traits of Pinus arose in the fiery Cretaceous
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
The mapping of functional traits onto chronograms is an emerging approach for the identification of how agents of natural selection have shaped the evolution of organisms. Recent research has reported fire-dependent traits appearing among flowering plants from 60 million yr ago (Ma). Although there are many records of fossil charcoal in the Cretaceous (65–145 Ma), evidence of fire-dependent traits evolving in that period is lacking. We link the evolutionary trajectories for five fire-adapted traits in Pinaceae with paleoatmospheric conditions over the last 250 million yr to determine the time at which fire originated as a selective force in trait evolution among seed plants. Fire-protective thick bark originated in Pinus c. 126 Ma in association with low-intensity surface fires. More intense crown fires emerged c. 89 Ma coincident with thicker bark and branch shedding, or serotiny with branch retention as an alternative strategy. These innovations appeared at the same time as the Earth’s paleoatmosphere experienced elevated oxygen levels that led to high burn probabilities during the mid-Cretaceous. The fiery environments of the Cretaceous strongly influenced trait evolution in Pinus. Our evidence for a strong correlation between the evolution of fire-response strategies and changes in fire regime 90–125 Ma greatly backdates the key role that fire has played in the evolution of seed plants.
Related items
Showing items related by title, author, creator and subject.
-
Lamont, Byron; He, Tianhua; Yan, Z. (2018)Fire has shaped the evolution of many plant traits in fire-prone environments: fire-resistant tissues with heat-insulated meristems, post-fire resprouting or fire-killed but regenerating from stored seeds, fire-stimulated ...
-
Lamont, Byron; He, Tianhua; Yan, Z. (2019)© 2018 Elsevier GmbH There is mounting evidence that much of the world's vegetation has been fire-prone since the Upper Cretaceous, taking precedence over Cenozoic drought as a key agent of selection in the evolution of ...
-
He, Tianhua; Lamont, Byron; Manning, J. (2016)Fire has had a profound effect on the evolution of worldwide biotas. The Cape Floristic Region is one of the world's most species-rich regions, yet it is highly prone to recurrent fires and fire-adapted species contribute ...