Transformer Parameters Estimation From Nameplate Data Using Evolutionary Programming Techniques
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
This paper proposes a simple and effective evolutionarycomputation-based technique to estimate the equivalentcircuit parameters of a single-phase transformer from its nameplatedata without the need to conduct any experimental measurements.Two techniques, namely: particle swarm optimizationand genetic algorithm are employed to track nameplate data byminimizing certain objective functions. The effectiveness of theproposed technique is examined through its application for threesingle-phase transformers of different ratings. The results showthat evolutionary computation techniques can precisely identifytransformer equivalent circuit parameters. The proposed techniquecan be extended to estimate the parameters of a three-phasepower transformer from its nameplate data without taking thetransformer out of service to carry out any experimental testing.
Related items
Showing items related by title, author, creator and subject.
-
Chai, Qinqin (2013)In this thesis, we develop new computational methods for three classes of dynamic optimization problems: (i) A parameter identification problem for a general nonlinear time-delay system; (ii) an optimal control problem ...
-
Abd El-Sallam, Amar (2005)New approaches and algorithms are developed for the identification and estimation of low order models that represent multipath channel effects in Code Division Multiple Access (CDMA) communication systems. Based on these ...
-
Paláncz, B.; Awange, Joseph; Völgyesi, L. (2017)© 2017 Geological Society of AustraliaA novel RANSAC robust estimation technique is presented as an effiecient method for solving the seven-parameter datum transformation problem in the presence of outliers. RANSAC method, ...