Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Theses
    • View Item
    • espace Home
    • espace
    • Curtin Theses
    • View Item

    An approach to activity recognition using multiple sensors

    Access Status
    Fulltext not available
    Authors
    Tran, Tien Dung
    Date
    2006
    Supervisor
    Dr. Hung Bui
    Dr. Dinh Phang
    Prof. vetha Venkatesh
    Type
    Thesis
    Award
    MSc
    
    Metadata
    Show full item record
    School
    School of Computing
    URI
    http://hdl.handle.net/20.500.11937/1702
    Collection
    • Curtin Theses
    Abstract

    Building smart home environments which automatically or semi-automatically assist and comfort occupants is an important topic in the pervasive computing field, especially with the coming of cheap, easy-to-install sensors. This has given rise to the indispensable need for human activity recognition from ubiquitous sensors whose purpose is to observe and understand what occupants are trying to do from sensory data. The main approach to the problem of human activity recognition is a probabilistic one so as to handle the complication of uncertainty, the overlapping of human behaviours and environmental noise. This thesis develops a probabilistic model as a framework for human activity recognition using multiple multi-modal sensors in complex pervasive environments. The probabilistic model to be developed is adapted and based on the abstract hidden Markov model (AHMM) with one layer to fuse multiple sensors. The concept of factored state representation is employed in the model to parsimoniously represent the state transitions for reducing the number of required parameters. The exact method is used in learning the model’s parameters and performing inference. To be able to incorporate a large number of sensors, several more parsimonious representations including the mixtures of smaller multinomials and sigmoid functions are investigated to model the state transitions, resulting in a reduction of the number of parameters and time required for training.We examine the approximate variational method to significantly reduce the time required for training the model instead of using the exact method. A system of fixed point equations is derived to iteratively update the free variational parameters. We also present the factored model in the case where all variables are continuous with the use of the conditional Gaussian distribution to model state transitions. The variational method is still employed in this case to speed up the model’s training process. The developed model is implemented and applied in recognizing daily activity in our smart home and the Nokia lab from multiple sensors. The experimental results show that the model is appropriate for fusing multiple sensors in activity recognition with a reasonable recognition performance.

    Related items

    Showing items related by title, author, creator and subject.

    • Factored state-abstract hidden Markov models for activity recognition using pervasive multi-modal sensors
      Tran, Dung; Phung, Dinh; Bui, H.H.; Venkatesh, Svetha (2005)
      Current probabilistic models for activity recognition do not incorporate much sensory input data due to the problem of state space explosion. In this paper, we propose a model for activity recognition, called the Factored ...
    • Development of a Human Activity Recognition System for Ballet Tasks
      Hendry, Danica; Chai, K.; Campbell, Amity ; Hopper, L.; O’Sullivan, P.; Straker, Leon (2020)
      Background: Accurate and detailed measurement of a dancer’s training volume is a key requirement to understanding the relationship between a dancer’s pain and training volume. Currently, no system capable of quantifying ...
    • Audio networks for speech enhancement and indexing
      Kühnapfel, Thorsten (2009)
      For humans, hearing is the second most important sense, after sight. Therefore, acoustic information greatly contributes to observing and analysing an area of interest. For this reason combining audio and video cues for ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.