Factored state-abstract hidden Markov models for activity recognition using pervasive multi-modal sensors
Access Status
Authors
Date
2005Type
Metadata
Show full item recordCitation
Source Title
Source Conference
ISBN
Collection
Abstract
Current probabilistic models for activity recognition do not incorporate much sensory input data due to the problem of state space explosion. In this paper, we propose a model for activity recognition, called the Factored State-Abtract Hidden Markov Model (FS-AHMM) to allow us to integrate many sensors for improving recognition performance. The proposed FS-AHMM is an extension of the Abstract Hidden Markov Model which applies the concept of factored state representations to compactly represent the state transitions. The parameters of the FS-AHMM are estimated using the EM algorithm from the data acquired through multiple multi-modal sensors and cameras. The model is evaluated and compared with other existing models on real-world data. The results show that the proposed model outperforms other models and that the integrated sensor information helps in recognizing activity more accurately.
Related items
Showing items related by title, author, creator and subject.
-
Tran, Tien Dung (2006)Building smart home environments which automatically or semi-automatically assist and comfort occupants is an important topic in the pervasive computing field, especially with the coming of cheap, easy-to-install sensors. ...
-
Hendry, Danica; Chai, K.; Campbell, Amity ; Hopper, L.; O’Sullivan, P.; Straker, Leon (2020)Background: Accurate and detailed measurement of a dancer’s training volume is a key requirement to understanding the relationship between a dancer’s pain and training volume. Currently, no system capable of quantifying ...
-
Shinmoto Torres, R.; Visvanathan, R.; Abbott, D.; Hill, Keith; Ranasinghe, D. (2017)© 2017 Shinmoto Torres et al. Falls in hospitals are common, therefore strategies to minimize the impact of these events in older patients and needs to be examined. In this pilot study, we investigate a movement monitoring ...