A novel weighted fuzzy LDA for face recognition using the genetic algorithm
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Fuzzy linear discriminate analysis (FLDA), the principle of which is the remedy of class means via fuzzy optimization, is proven to be an effective feature extraction approach for face recognition. However, some of the between-class distances in the projected space after FLDA may be too small, which can render some classes inseparable. In this paper we propose a weighted FLDA approach that aims to increase the smallest of the between-class distances. This is accomplished by introducing some weighting coefficients to the between-class distances in FLDA. Since the optimal selection of these weighting coefficients is not tractable via standard optimization techniques, the genetic algorithm is adopted as an alternative solution in this paper. The experimental results on some benchmark data sets reveal that the proposed weighted fuzzy LDA can improve the worst recognition rate effectively and also exceed LDA and FLDA’s average performance index.
Related items
Showing items related by title, author, creator and subject.
-
Robinson, Todd Peter (2008)Invasive plants pose serious threats to economic, social and environmental interests throughout the world. Developing strategies for their management requires a range of information that is often impractical to collect ...
-
Islam, Zahurul (2004)This research presents models for the analysis of textural and contextual information content of multiscale remote sensing to select an appropriate scale for the correct interpretation and mapping of heterogeneous urban ...
-
Remias, Michael George (2012)In modelling and optimizing real world systems and processes, one usually ends up with a linear or nonlinear programming problem, namely maximizing one or more objective functions subject to a set of constraint equations ...