Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Facile synthesis of Mn3O4-reduced graphene oxide hybrids for catalytic decomposition of aqueous organics

    Access Status
    Fulltext not available
    Authors
    Yao, Yunjin.
    Xu, C.
    Yu, S.
    Zhang, D.
    Wang, Shaobin
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Yao, Yunjin. and Xu, Chuan and Yu, Shaoming and Zhang, Dawei and Wang, Shaobin. 2013. Facile synthesis of Mn3O4-reduced graphene oxide hybrids for catalytic decomposition of aqueous organics. Industrial & Engineering Chemistry Research. 52: pp. 3637-3645.
    Source Title
    Industrial & Engineering Chemistry Research
    DOI
    10.1021/ie303220x
    ISSN
    0888-5885
    URI
    http://hdl.handle.net/20.500.11937/17158
    Collection
    • Curtin Research Publications
    Abstract

    Mn3O4-reduced graphene oxide (rGO) hybrids were synthesized, and their catalytic performance in heterogeneous activation of peroxymonosulfate (PMS) to oxidize a target pollutant, Orange II, in aqueous solutions was investigated. The surface morphology and structure of the Mn3O4-rGO hybrids were characterized by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). Through an in situ chemical deposition and reduction, Mn3O4-rGO hybrids with Mn3O4 nanoparticles at an average size of 29.2 nm were produced. The catalytic activity in Orange II oxidative decomposition was evaluated in view of the effects of various processes, pH, PMS concentration, Orange II concentration, and temperature. The combination of Mn3O4 nanoparticles with graphene sheets leads to a much higher catalytic activity than that of pure Mn3O4 or rGO. Graphene was found to play an important role in Mn3O4 dispersion and decomposition of Orange II. Typically, 30 mg/L of Orange II could be completely oxidized in 120 min at 25 °C and 0.05 g/L of Mn3O4-rGO hybrids, showing a promising application of the catalyst in the oxidative degradation of aqueous organic pollutants. The efficiency of Orange II decomposition increased with increasing temperature (25-55 °C), pH (4.0-11.0), and PMS dosage (0.25-1.5 g/L), but it decreased with increasing initial Orange II concentration (30-90 mg/L). Mn3O4-rGO hybrids exhibited stable performance without losing activity after four successive runs.

    Related items

    Showing items related by title, author, creator and subject.

    • Synthesis of magnetic cobalt Nanoparticles anchored on graphene nanosheets and catalytic decomposition of orange II
      Yao, Yunjin; Xu, C.; Qin, J.; Wei, F.; Rao, M.; Wang, S. (2013)
      Magnetic cobalt nanoparticles (NPs) at a size of approximately 29.9 nm anchored on graphene sheets were prepared and tested for heterogeneous oxidation of a dyeing pollutant, Orange II, with peroxymonosulfate (PMS) in ...
    • Facile synthesis of magnetic znfe2o4-reduced graphene oxide hybrid and its photo-fenton-like behavior under visible iradiation
      Yao, Yunjin.; Qin, J.; Cai, Y.; Wei, F.; Lu, F.; Wang, Shaobin (2014)
      A magnetic ZnFe2O4–reduced graphene oxide (rGO) hybrid was successfully developed as a heterogeneous catalyst for photo-Fenton-like decolorization of various dyes using peroxymonosulfate (PMS) as an oxidant under visible ...
    • Magnetic recoverable MnFe2O4 and MnFe2O4-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants
      Yao, Y.; Cai, Y.; Lu, F.; Wei, F.; Wang, X.; Wang, Shaobin (2014)
      Magnetic iron based materials are generally effective for many catalytic reactions and can be magnetically recovered after application, showing advantages than other metal oxides. In the present work, magnetic MnFe2O4 ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.