Energy-Aware Two Link-Disjoint Paths Routing
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
Source Conference
ISBN
Remarks
Copyright © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Collection
Abstract
Network robustness and throughput can be improved by routing each source-to-terminal (s, t) demand via two link-disjoint paths (TLDP). However, the use of TLDP incurs higher energy cost. Henceforth, we address the problem of minimizing the energy usage of networks that use TLDP. Specifically, our problem is to maximally switch off redundant network links while maintaining at least 0≤T≤100% of (s, t) TLDP in the network, for a given T, and limiting the maximum link utilization (MLU) to no greater than a configured threshold. To address this problem, we present a fast heuristic, called TLDP by Shortest Path First (TLDP-SPF), and extensively evaluate its performance on both real and/or synthetic topologies and traffic demands. Our simulation results show that TLDP-SPF can reduce network energy usage, on average, by more than 20%, even for MLU below 50%. As compared to using Shortest Path routing, while reducing energy by about 20%, TLDP-SPF does not significantly affect (s, t) path length, even for MLU<;50%.
Related items
Showing items related by title, author, creator and subject.
-
Lin, GongQi; Soh, Sieteng; Chin, K.; Lazarescu, M. (2014)Network robustness and throughput can be improved by routing each source-to-terminal (sd, td) demand d via two disjoint paths (2DP). However, 2DP routing increases energy usage despite yielding lower link utilization and ...
-
Lin, GongQi; Soh, Sieteng; Chin, K. (2015)Current network infrastructures are over-provisioned to increase their resilience against resource failures. Such strategies exhibit poor energy efficiency during off-peak periods. In this respect, energy aware Traffic ...
-
Lin, Gongqi; Soh, Sieteng; Chin, K.; Lazarescu, Mihai (2013)Current network infrastructures are over-provisioned to increase their resilience against resource failures, e.g., bundled links and nodes, as well as congestion during peak hours. However such strategies waste resources ...