Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Thomsen's parameters from p-wave measurements in a spherical sample

    Access Status
    Fulltext not available
    Authors
    Bona, Andrej
    Nadri, D.
    Brajanovski, Miroslav
    Date
    2010
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Bona, Andrej and Nadri, Dariush and Brajanovski, Miroslav. 2010. Thomsen's parameters from p-wave measurements in a spherical sample. Geophysical Prospecting. 60 (1): pp. 103-116.
    Source Title
    Geophysical Prospecting
    DOI
    10.1111/j.1365-2478.2010.00917.x
    ISSN
    0016-8025
    School
    Department of Exploration Geophysics
    Remarks

    First published online: August 17, 2010

    URI
    http://hdl.handle.net/20.500.11937/17333
    Collection
    • Curtin Research Publications
    Abstract

    The aim of this paper is to understand the seismic anisotropy of the overburden shale in an oilfield in the North West Shelf of Western Australia. To this end, we first find the orientation of the symmetry axis of a spherical shale sample from measurements of ultrasonic P-wave velocities in 132 directions at the reservoir pressure. After transforming the data to the symmetry axis coordinates, we find Thomsen's anisotropy parameters δ and ɛ using these measurements and measurements of the shear-wave velocity along the symmetry axis from a well log. To find these anisotropy parameters, we use a very fast simulated re-annealing algorithm with an objective function that contains only the measured ray velocities, their numerical derivatives and the unknown elasticity parameters. The results show strong elliptical anisotropy in the overburden shale. This approach produces smaller uncertainty of Thomsen parameter δ than more direct approaches.

    Related items

    Showing items related by title, author, creator and subject.

    • Modelling elastic anisotropy of dry rocks as a function of applied stress
      Madadi, Mahyar; Pervukhina, Marina; Gurevich, Boris (2013)
      We propose an analytical model for seismic anisotropy caused by the application of an anisotropic stress to an isotropic dry rock. We first consider an isotropic, linearly elastic medium (porous or non-porous) permeated ...
    • An analytic model for the stress-induced anisotropy of dry rocks
      Gurevich, Boris; Pervukhina, M.; Makarynska, Dina (2011)
      One of the main causes of azimuthal anisotropy in sedimentary rocks is anisotropy of tectonic stresses in the earth's crust. We have developed an analytic model for seismic anisotropy caused by the application of a small ...
    • Modeling shear wave splitting due to stress-induced anisotropy, with an application to Mount Asama Volcano, Japan
      Shelley, A.; Savage, M.; Williams, C.; Aoki, Y.; Gurevich, Boris (2014)
      We use numerical modeling to investigate the proposed stress-based origin for changing anisotropy at Mount Asama Volcano, Japan. Stress-induced anisotropy occurs when deviatoric stress conditions are applied to rocks which ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.