Syngas production from palm kernel shell and polyethylene waste blend in fluidized bed catalytic steam co-gasification process
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
School
Collection
Abstract
Energy from renewable source is expected to complement the energy derived from fossil fuel resources. Gasification is a versatile thermochemical process for solid waste fuel conversion. In the current paper, syngas production from palm kernel shell (PKS) and polyethylene waste blend in a catalytic steam gasification process is studied. In order to acquire the optimum condition of syngas production, the effect of main variables such as reaction temperature, steam/feedstock (S/F) ratio, polyethylene waste/biomass (P/B) ratio on syngas production was investigated and optimized via Taguchi design of experiment approach. Under the optimized condition of 800 °C, P/B ratio: 0.3 w/w and S/F ratio: 1 w/w, the total syngas yield and hydrogen yield achieved are 422.40 g syngas/kg feedstock and 135.27 g H2/kg feedstock, respectively.
Related items
Showing items related by title, author, creator and subject.
-
Zhu, Jian N. (2001)Utilisation of natural gas (mainly methane, CH[subscript]4), a clean and abundant resource, is of great importance. Conventional method, steam reforming, though still dominant, requires a considerately high capital ...
-
Berwick, Lyndon (2009)The analytical capacity of MSSV pyrolysis has been used to extend the structural characterisation of aquatic natural organic matter (NOM). NOM can contribute to various potable water issues and is present in high ...
-
Raheem, A.; Wan Azlina, W.; Taufiq Yap, Y.; Danquah, Michael; Harun, R. (2015)Gasification has emerged as an effective thermochemical conversion technology for generating syngas products from biomass. Process conditions for optimizing the productivity and quality of syngas during gasification vary ...