Show simple item record

dc.contributor.authorAnderssen, R.
dc.contributor.authorBaddeley, Adrian
dc.contributor.authorde Hoog, F.
dc.contributor.authorNair, G.
dc.date.accessioned2017-01-30T12:02:12Z
dc.date.available2017-01-30T12:02:12Z
dc.date.created2015-10-29T04:09:49Z
dc.date.issued2014
dc.identifier.citationAnderssen, R. and Baddeley, A. and de Hoog, F. and Nair, G. 2014. Numerical solution of an integral equation from point process theory. Journal of Integral Equations and Applications. 26 (4): pp. 437-453.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/17486
dc.identifier.doi10.1216/JIE-2014-26-4-437
dc.description.abstract

We propose and analyze methods for the numerical solution of an integral equation which arises in statistical physics and spatial statistics. Instances of this equation include the Mean Field, Poisson-Boltzmann and Emden equations for the density of a molecular gas, and the Poisson saddlepoint approximation for the intensity of a spatial point process. Conditions are established under which the Picard iteration and the under relaxation iteration converge. Numerical validation is included.

dc.publisherRocky Mountain Mathematics Consortium
dc.titleNumerical solution of an integral equation from point process theory
dc.typeJournal Article
dcterms.source.volume26
dcterms.source.number4
dcterms.source.startPage437
dcterms.source.endPage453
dcterms.source.issn0897-3962
dcterms.source.titleJournal of Integral Equations and Applications
curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record