Numerical solution of an integral equation from point process theory
dc.contributor.author | Anderssen, R. | |
dc.contributor.author | Baddeley, Adrian | |
dc.contributor.author | de Hoog, F. | |
dc.contributor.author | Nair, G. | |
dc.date.accessioned | 2017-01-30T12:02:12Z | |
dc.date.available | 2017-01-30T12:02:12Z | |
dc.date.created | 2015-10-29T04:09:49Z | |
dc.date.issued | 2014 | |
dc.identifier.citation | Anderssen, R. and Baddeley, A. and de Hoog, F. and Nair, G. 2014. Numerical solution of an integral equation from point process theory. Journal of Integral Equations and Applications. 26 (4): pp. 437-453. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/17486 | |
dc.identifier.doi | 10.1216/JIE-2014-26-4-437 | |
dc.description.abstract |
We propose and analyze methods for the numerical solution of an integral equation which arises in statistical physics and spatial statistics. Instances of this equation include the Mean Field, Poisson-Boltzmann and Emden equations for the density of a molecular gas, and the Poisson saddlepoint approximation for the intensity of a spatial point process. Conditions are established under which the Picard iteration and the under relaxation iteration converge. Numerical validation is included. | |
dc.publisher | Rocky Mountain Mathematics Consortium | |
dc.title | Numerical solution of an integral equation from point process theory | |
dc.type | Journal Article | |
dcterms.source.volume | 26 | |
dcterms.source.number | 4 | |
dcterms.source.startPage | 437 | |
dcterms.source.endPage | 453 | |
dcterms.source.issn | 0897-3962 | |
dcterms.source.title | Journal of Integral Equations and Applications | |
curtin.department | Department of Mathematics and Statistics | |
curtin.accessStatus | Fulltext not available |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |