Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Development of deflection hardening geopolymer based ductile fiber reinforced cementitious composites

    191803_191803.pdf (1.190Mb)
    Access Status
    Open access
    Authors
    Ahmed, Shaikh
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Ahmed, S.F.U. and Lu, Y.Y. 2013. Development of deflection hardening geo-polymer based ductile fiber reinforced cementitious composites. Journal of Chinese Advanced Materials Society. 1 (1): pp. 7-20.
    Source Title
    Journal of Chinese advanced materials society
    DOI
    10.1080/22243682.2013.771916
    ISSN
    22243682
    Remarks

    This is an Author's Accepted Manuscript of an article published in the Journal of the Chinese Advanced Materials Society (2013), copyright Taylor & Francis, available online at: <a href="http://www.tandfonline.com/10.1080/22243682.2013.771916">http://www.tandfonline.com/10.1080/22243682.2013.771916</a>.

    URI
    http://hdl.handle.net/20.500.11937/17545
    Collection
    • Curtin Research Publications
    Abstract

    Ductile fibre reinforced cementitious composites (DFRCC) are cement-based composites reinforced with short random fibres (metallic and/or non-metallic) which exhibit deflection-hardening and multiple-cracking behaviours in bending. It is a special class of high performance fibre reinforced cementitious composite (HPFRCC) that has higher deflection capacity than that of regular fibre reinforced concrete (FRC). Current DFRCCs are limited to cement-rich matrix system. This paper reports the development of geopolymer-based DFRCC where the cement binder in DFRCC is replaced by fly ash-based geopolymer binder and alkaline liquids (sodium hydroxide and sodium silicate) are used to activate the fly ash. In this study, three types of fibres are considered namely steel and two types of polyvinyl alcohol (PVA) fibres having different diameter, length and elastic modulus. The fibres used in the development of both cement-based and geopolymer-based DFRCCs are limited to single fibre type. The effects of two different sand sizes (1.18 mm and 0.6 mm) and sand/binder ratios of 0.5 and 0.75 on deflection-hardening and multiple-cracking behaviour of both types of DFRCC are also evaluated. Results reveal that deflection-hardening and multiple-cracking behaviour can be achieved in geopolymer-based DFRCC similar to that of cement-based system. For a given sand size, fibre type and sand content, comparable ultimate flexural strength and the deflection at peak load are observed in both cement and geopolymer-based composites. The proposed development exhibits a significant benefit for the use of geopolymer-based DFRCC over cement-based system as the former one is green in terms of no cement use.

    Related items

    Showing items related by title, author, creator and subject.

    • Deflection hardening behaviour of short fibre reinforced fly ash based geo-polymer composites
      Shaikh, F.U.A. (2013)
      This paper reports the newly developed ductile fibre reinforced geopolymer composite (DFRGC) exhibiting deflection hardening and multiple cracking behaviour. The binder of the above composite is different from that used ...
    • Comparative Deflection Hardening Behavior of Fly Ash-Based Geopolymer Composite with the Conventional Cement-Based Composite
      Nematollahi, B.; Sanjayan, J.; Shaikh, Faiz (2014)
      This paper compares the behavior of a recently developed fly ash-based ductile fiber reinforced geopolymer composite (DFRGC) exhibiting deflection hardening and multiple cracking behavior in flexure with its cement-based ...
    • Development of geo-polymer based Ductile Fibre Reinforced Cementitious Composites (DFRCC)
      Ahmed, Shaikh; Hossain, Mokbul; Lu, Yee Yong (2012)
      This paper presents the development of geopolymer based Ductile Fibre Reinforced Cementitious Composites (DRFCC) containing steel and two types of polyvinyl alcohol (PVA) fibres. The fibres are used in mono form in the ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.