Stabilized sparse ordinal regression for medical risk stratification
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
The recent wide adoption of electronic medical records (EMRs) presents great opportunities and challenges for data mining. The EMR data are largely temporal, often noisy, irregular and high dimensional. This paper constructs a novel ordinal regression framework for predicting medical risk stratification from EMR. First, a conceptual view of EMR as a temporal image is constructed to extract a diverse set of features. Second, ordinal modeling is applied for predicting cumulative or progressive risk. The challenges are building a transparent predictive model that works with a large number of weakly predictive features, and at the same time, is stable against resampling variations. Our solution employs sparsity methods that are stabilized through domain-specific feature interaction networks. We introduces two indices that measure the model stability against data resampling. Feature networks are used to generate two multivariate Gaussian priors with sparse precision matrices (the Laplacian and Random Walk). We apply the framework on a large short-term suicide risk prediction problem and demonstrate that our methods outperform clinicians to a large margin, discover suicide risk factors that conform with mental health knowledge, and produce models with enhanced stability. © 2014 Springer-Verlag London.
Related items
Showing items related by title, author, creator and subject.
-
Nordin, Syarifah Zyurina (2011)Task scheduling in parallel processing systems is one of the most challenging industrial problems. This problem typically arises in the manufacturing and service industries. The task scheduling problem is to determine a ...
-
Chikolwa, Bwembya C (2008)According to the Reserve Bank of Australia (2006) the increased supply of Commercial Mortgage-Backed Securities (CMBS), with a range of subordination, has broadened the investor base in real estate debt markets and reduced ...
-
Tran, The Truyen; Luo, W.; Phung, D.; Gupta, S.; Rana, S.; Kennedy, R.; Larkins, A.; Venkatesh, S. (2014)Background: Feature engineering is a time consuming component of predictive modeling. We propose a versatile platform to automatically extract features for risk prediction, based on a pre-defined and extensible entity ...