Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Theses
    • View Item
    • espace Home
    • espace
    • Curtin Theses
    • View Item

    Signal processing algorithms for multiuser MIMO relay communication systems

    188719_Khandaker2012.pdf (960.2Kb)
    Access Status
    Open access
    Authors
    Khandaker, Muhammad Ruhul Amin
    Date
    2012
    Supervisor
    Dr Yue Rong
    Type
    Thesis
    Award
    PhD
    
    Metadata
    Show full item record
    School
    School of Electrical Engineering and Computing, Department of Electrical and Computer Engineering
    URI
    http://hdl.handle.net/20.500.11937/1797
    Collection
    • Curtin Theses
    Abstract

    The increasing demand for mobile applications such as streaming media, software updates, and location-based services involving group communications has prompted the need for wireless communication technologies that can support reliable high data rates. However, wireless channel is subject to signal fading that severely degrades the system spectral efficiency. By exploiting the spatial diversity, multiple-input multiple-output (MIMO) techniques can provide both theoretically attractive and technically practical solutions to combat channel fading. Moreover, in the case of long source-destination distance, single or multiple MIMO relay node(s) is necessary to combat the pathloss and/or shadowing effects of wireless channel and relay signals from the source to the destination.In this thesis, we focus on multiuser MIMO relay systems. We first present joint source, relay, and receiver optimization algorithms for the uplink system based on the minimum mean-squared error (MMSE) criterion subjecting to individual power constraints at the source and the relay nodes. The proposed algorithms outperform the existing techniques in terms of both MSE and bit-error-rate (BER). Next, in the downlink system, we consider multicasting multiple data streams among a group of users with the aid of a relay node, where all the nodes are equipped with multiple antennas. The downlink system performance is optimized subjecting to both power constraints at the source and the relay nodes and quality-of-service (QoS) constraints at the receivers.Then we present the duality between the uplink and the downlink of a multi-hop MIMO relay system. Based on this duality, we propose an optimal design of the source precoding matrix and relay amplifying matrices for multi-hop MIMO relay system with a nonlinear dirty paper coding (DPC)- based transmitter at the source node. The proposed nonlinear transmitter algorithm outperforms the existing decision feedback equalizer (DFE)-based receiver schemes.Multiuser MIMO relaying is then considered in an interference system where a group of transmitters communicate simultaneously with their desired destination nodes with the aid of multiple relay nodes, all equipped with multiple antennas. Transmit-relay-receive beamforming technique is exploited to minimize the total source and relay transmit power in conjunction with transmit power control such that a minimum QoS threshold is maintained at each receiver. The proposed scheme generalizes the existing single-hop MIMO interference systems and the single-antenna, dual-hop interference relay systems to the dual-hop interference MIMO relay systems with any number of source, relay, and destination nodes, all equipped with multiple antennas.The above algorithms are developed assuming that the instantaneous channel state information (CSI) knowledge of both the source-relay link and the relay-destination link is available at the scheduler. However, in practical relay communication systems, the instantaneous CSI is unknown, and therefore, has to be estimated. Hence, we finally propose a bandwidth efficient MIMO channel estimation algorithm that provides the destination node with full knowledge of all channel matrices involved in a dual-hop MIMO communication. The proposed approach attains smaller channel estimation error and is applicable for both one-way and two-way MIMO relay systems.

    Related items

    Showing items related by title, author, creator and subject.

    • Interference MIMO Relay Channel: Joint Power Control and Transceiver-Relay Beamforming
      Khandaker, Muhammad; Rong, Yue (2012)
      In this paper, we consider an interference multiple-input multiple-output (MIMO) relay system where multiple source nodes communicate with their desired destination nodes concurrently with the aid of distributed relay ...
    • Transceiver Design for AF MIMO Relay Systems with a Power Splitting Based Energy Harvesting Relay Node
      Li, Bin ; Zhang, M.; Cao, H.; Rong, Yue ; Han, Z. (2020)
      In this article, a dual-hop amplify-and-forward (AF) multiple-input multiple-output (MIMO) relay communication system is studied. With a splitting (PS) protocol, the relay node harvests the radio frequency (RF) energy in ...
    • Joint Power Control and Beamforming for Interference MIMO Relay Channel
      Khandaker, Muhammad; Rong, Yue (2011)
      In this paper, we consider an interference multiple-input multiple-output (MIMO) relay system where multiple source nodes communicate with their desired destination nodes with the aid of distributed relay nodes. An iterative ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.