Particle deposition in natural gas pipelines using computational fluid dynamics modelling
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
DOI
ISSN
School
Collection
Abstract
Solid particles within natural gas transmission and distribution pipeline systems are known to create varying operational constraints for pipeline operators—from temporary to complete stoppage of the gas flow. The solid particles can be extremely variable, both in composition and origin. The particles can consist of discrete elements or mechanically and chemically driven combinations of soils, iron oxides, iron sulfides, sulfur compounds, salts, metal oxides, hydrocarbons and other contaminants. These particles tend to get deposited along the walls of gas pipelines under different circumstances.The flow dynamics and the turbulence associated with the flow play an important role in the complex mechanism of particle deposition. In this work, we have shown how turbulence acts as a dominant mechanism in influencing particle deposition. A ball valve’s downstream flow was simulated for various opening positions and varying inlet Reynolds numbers to understand turbulence and its effect on particle deposition. The percentage of number of particles getting deposited at the downstreamincreased on decreasing the valve opening, whereas it was not greatly affected by the change in the inlet Reynolds number. The particle deposition sites at downstream were governed indirectly by valve opening percentage.
Related items
Showing items related by title, author, creator and subject.
-
Zhu, Z.; Tajallipour, N.; Teevens, P.; Lepková, K.; Gubner, Rolf (2011)Sulfur deposition has been a prominent internal corrosion accelerant issue in sour gas pipeline production operations. In this paper, a theoretical model is proposed to predict the behaviour of elemental sulfur (S8) ...
-
Chen, T.; Ren, Z.; Xu, C.; Loxton, Ryan (2015)When fluid flow in a pipeline is suddenly halted, a pressure surge or wave is created within the pipeline. This phenomenon, called water hammer, can cause major damage to pipelines, including pipeline ruptures. In this ...
-
Dong, Li; Ji, W.; Zhao, Z.; Xu, G. (2014)The existence of stagnant particle layer in the conventional non-mechanical valves limits their utilization in CFB with the feedstock of caking particles. A new N-valve consisted of a fluidized weir chamber with bottom ...