Show simple item record

dc.contributor.authorGuo, Y.
dc.contributor.authorWu, Yong Hong
dc.contributor.authorLai, S.
dc.date.accessioned2017-01-30T12:07:03Z
dc.date.available2017-01-30T12:07:03Z
dc.date.created2015-10-29T04:09:29Z
dc.date.issued2015
dc.identifier.citationGuo, Y. and Wu, Y.H. and Lai, S. 2015. On weak solutions to a shallow water wave model of moderate amplitude. Applicable Analysis. 95 (8): pp. 1808-1829.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/18301
dc.identifier.doi10.1080/00036811.2015.1073265
dc.description.abstract

The existence of global weak solutions for a dissipative model equation for shallow water wave of moderate amplitude is studied in the space C([0, ∞) x R ∩ L ∞((0, ∞); H1 R)) without the sign condition on the initial value by employing the limit technique of viscous approximation. A new one-sided lower bound and the higher integrability estimate act a key role in our analysis. Our results partly extend the work of Coclite et al. on the existence of global weak solutions to the generalized hyperlastic-rod equation.

dc.publisherTaylor and Francis Ltd.
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/FT140101112
dc.titleOn weak solutions to a shallow water wave model of moderate amplitude
dc.typeJournal Article
dcterms.source.issn0003-6811
dcterms.source.titleApplicable Analysis
curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record