Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    All traveling wave exact solutions of three kinds of nonlinear evolution equations

    Access Status
    Fulltext not available
    Authors
    Meng, F.
    Zhang, L.
    Wu, Yong Hong
    Yuan, W.
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Meng, F. and Zhang, L. and Wu, Y.H. and Yuan, W. 2015. All traveling wave exact solutions of three kinds of nonlinear evolution equations. Mathematical Methods in the Applied Sciences. 38 (7): pp. 3678-3688.
    Source Title
    Mathematical Methods in the Applied Sciences
    ISSN
    0170-4214
    School
    Department of Mathematics and Statistics
    URI
    http://hdl.handle.net/20.500.11937/18322
    Collection
    • Curtin Research Publications
    Abstract

    In this article, we employ the complex method to obtain all meromorphic exact solutions of complex Klein–Gordon (KG) equation, modified Korteweg-de Vries (mKdV) equation, and the generalized Boussinesq (gB) equation at first, then find all exact solutions of the Equations KG, mKdV, and gB. The idea introduced in this paper can be applied to other nonlinear evolution equations. Our results show that all rational and simply periodic solutions are solitary wave solutions, the complex method is simpler than other methods, and there exist some rational solutions w2r,2.z/ and simply periodic solutions w1s,2.z/,w2s,1.z/ in these equations such that they are not only new but also not degenerated successively by the elliptic function solutions. We have also given some computer simulations to illustrate our main results.

    Related items

    Showing items related by title, author, creator and subject.

    • The well-posedness and solutions of Boussinesq-type equations
      Lin, Qun (2009)
      We develop well-posedness theory and analytical and numerical solution techniques for Boussinesq-type equations. Firstly, we consider the Cauchy problem for a generalized Boussinesq equation. We show that under suitable ...
    • Numerical Solution of Second-Order Linear Fredholm Integro-Differential Equation Using Generalized Minimal Residual Method
      Aruchunan, Elayaraja; Sulaiman, J. (2010)
      This research purposely brought up to solve complicated equations such as partial differential equations, integral equations, Integro-Differential Equations (IDE), stochastic equations and others. Many physical phenomena ...
    • Groebner-basis solution of the three-dimensionalresection problem (P4P)
      Awange, Joseph; Grafarend, E. (2003)
      The three-dimensional (3-D) resection problemis usually solved by first obtaining the distancesconnecting the unknown point {X; Y ; Z} to the known points {Xi; Yi; Zi}/ i= 1, 2, 3 through the solution of the three nonlinear ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.