Adjoint retrieval of prognostic land surface model variables for an NWP model: Assimilation of ground surface temperature
Access Status
Authors
Date
2010Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
Based on a 2-layer land surface model, a rather general variational data assimilation framework for estimatingmodel state variables is developed. The method minimizes the error of surface soil temperature predictionssubject to constraints imposed by the prediction model. Retrieval experiments for soil prognostic variables areperformed and the results verified against model simulated data as well as real observations for the OklahomaAtmospheric Surface layer Instrumentation System (OASIS). The optimization scheme is robust with respect toa wide range of initial guess errors in surface soil temperature (as large as 30 K) and deep soil moisture (withinthe range between wilting point and saturation). When assimilating OASIS data, the scheme can reduce theinitial guess error by more than 90%, while for Observing Simulation System Experiments (OSSEs), the initialguess error is usually reduced by over four orders of magnitude.Using synthetic data, the robustness of the retrieval scheme as related to information content of the data andthe physical meaning of the adjoint variables and their use in sensitivity studies are investigated. Throughsensitivity analysis, it is confirmed that the vegetation coverage and growth condition determine whether ornot the optimally estimated initial soil moisture condition leads to an optimal estimation of the surface fluxes.This reconciles two recent studies.With the real data experiments, it is shown that observations during the daytime period are the most effectivefor the retrieval. Longer assimilation windows result in more accurate initial condition retrieval, underlining theimportance of information quantity, especially for schemes assimilating noisy observations.
Related items
Showing items related by title, author, creator and subject.
-
Ren, Diandong; Xue, M. (2016)© 2016 Diandong Ren and Ming Xue. This study demonstrates successful variational retrieval of land surface states by assimilating screen level atmospheric measurements of specific humidity and air temperature. To this ...
-
Chai, Soo See; Walker, J.; Makarynskyy, Oleg; Kuhn, Michael; Veenendaal, Bert; West, Geoffrey (2010)Passive microwave remote sensing is one of the most promising techniques for soil moisture retrieval. However, the inversion of soil moisture from brightness temperature observations is not straightforward, as it is ...
-
Khaki, M.; Hoteit, I.; Kuhn, Michael; Awange, Joseph; Forootan, E.; van Dijk, A.; Schumacher, M.; Pattiaratchi, C. (2017)© 2017 Elsevier Ltd The time-variable terrestrial water storage (TWS) products from the Gravity Recovery And Climate Experiment (GRACE) have been increasingly used in recent years to improve the simulation of hydrological ...