Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Regeneration changes in tree species abundance, diversity and structure in logged and unlogged subtropical rainforest over a 36-year period

    Access Status
    Fulltext not available
    Authors
    Kariuki, M.
    Kooyman, R.
    Smith, R.
    Wardell-Johnson, Grant
    Vanclay, J.
    Date
    2006
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Kariuki, Maina and Kooyman, Robert M. and Smith, R.G.B. and Wardell-Johnson, Grant and Vanclay, Jerome K. 2006. Regeneration changes in tree species abundance, diversity and structure in logged and unlogged subtropical rainforest over a 36-year period. Forest Ecology and Management. 236 (2-3): pp. 162-176.
    Source Title
    Forest Ecology and Management
    DOI
    10.1016/j.foreco.2006.09.021
    ISSN
    03781127
    Faculty
    School of Agriculture and Environment
    Faculty of Science and Engineering
    Department of Environmental Biology
    Remarks

    Copyright © 2006 Elsevier B.V. All rights reserved

    URI
    http://hdl.handle.net/20.500.11937/18359
    Collection
    • Curtin Research Publications
    Abstract

    The long-term effects of logging treatments on rainforest regeneration are difficult to quantify due to compounding interactions with natural dynamics, site characteristics and tree species. The aim of this study was to examine regeneration differences over a 36-year period in stands subjected to various levels of disturbance ranging from natural, through an increasing intensity of individual tree removal to intensive logging. Multivariate and univariate analyses of trees 10 cm diameter at 1.3 m above the ground (dbh) showed that regeneration responses were generally correlated with disturbance gradient. In the undisturbed controls there were gradual changes that had no significant effects on tree species richness and diversity, stem density, or diameter distribution. Gradual changes were also observed during the early stages of regeneration following logging. However, in logged sites changes in tree species richness and diversity, stem density and diameter distribution became more rapid with time, and significant changes were observed. Similar regeneration events across site and disturbance levels resulted in three identifiable stages. In the first stage, lasting about 10 years, stem density of abundant shade tolerant trees decreased with no discernable changes in tree species richness. In the second stage, also lasting about 10 years, tree species richness and diversity, as well as stem density decreased to minima due to localised species turnover and net mortality. In the third stage, recruitment surpassed mortality and reversed the net loss of both species and stems, as tree species assemblages began to return to pre-disturbance levels.Sites subjected to individual tree selective logging returned to their pre-logging states in all aspects within 35 years of logging, but diameter distribution of trees ≥40 cm dbh showed low density compared to that observed in the controls. After 15-30 years, sites subjected to more intensive logging returned to their pre-logging levels of stem densities, species abundance and richness, but after 35-44 years of regeneration this sites had low species diversity and high densities of both the small sized stems and shade intolerant treespecies. More intensively logged sites also had a low density of shade tolerant tree species compared to the controls. This suggests that the restoration of forest structure takes considerably longer than the restoration of tree species richness and abundance following logging in these forests. A high rate of stand basal area growth and a modest diameter distribution of lager trees ≥40 cm dbh were observed in moderate tree selection logging. This indicates high timber production potential at moderate tree selection rate in this type of forest. However, if the stem size distribution of larger trees is to be maintained, a logging cycle longer than 50 years is necessary.

    Related items

    Showing items related by title, author, creator and subject.

    • Oil mallee plantings and arthropod biodiversity in the Western Australian wheatbelt : effects of host species, nutrition, and leaf chemistry
      Lyons, Anita Marie (2008)
      Since European settlement, around 93% of the Western Australian wheatbelt has been cleared for agriculture, leading to a range of environmental problems, including erosion, salinity, and loss of biodiversity. Recently, ...
    • Developing completion criteria for rehabilitation areas on arid and semi-arid mine sites in Western Australia
      Brearley, Darren (2003)
      Continued expansion of the gold and nickel mining industry in Western Australia during recent years has led to disturbance of larger areas and the generation of increasing volumes of waste rock. Mine operators are obligated ...
    • Ecology of Eucalyptus victrix in grassland in the floodplain of the Fortescue River.
      Florentine, Singarayer K. (1999)
      The WA coolibah tree, Eucalyptus victrix L. Johnson & K. Hill forms an unique and pristine woodland in the Fortescue Valley, in the Pilbara district of Western Australia. Until recently, no research had been done on E. ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.