Show simple item record

dc.contributor.authorSun, D.
dc.contributor.authorSun, Jie
dc.contributor.authorZhang, L.
dc.date.accessioned2017-01-30T12:07:32Z
dc.date.available2017-01-30T12:07:32Z
dc.date.created2014-09-02T20:01:17Z
dc.date.issued2008
dc.identifier.citationSun, D. and Sun, J. and Zhang, L. 2008. The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming. Mathematical Programming. 114: pp. 349-391.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/18373
dc.identifier.doi10.1007/s10107-007-0105-9
dc.description.abstract

We analyze the rate of local convergence of the augmented Lagrangian method in nonlinear semidefinite optimization. The presence of the positive semidefinite cone constraint requires extensive tools such as the singular value decomposition of matrices, an implicit function theorem for semismooth functions, and variational analysis on the projection operator in the symmetric matrix space. Without requiring strict complementarity, we prove that, under the constraint nondegeneracy condition and the strong second order sufficient condition, the rate of convergence is linear and the ratio constant is proportional to 1/c, where c is the penalty parameter that exceeds a threshold c¯ > 0.

dc.publisherSpringer
dc.titleThe rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming
dc.typeJournal Article
dcterms.source.volume114
dcterms.source.startPage349
dcterms.source.endPage391
dcterms.source.issn00255610
dcterms.source.titleMathematical Programming
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record