SE Asian carbonates: tools for evaluating environmental and climatic change in equatorial tropics over the last 50 million years
Access Status
Authors
Date
2011Type
Metadata
Show full item recordCitation
Source Title
ISBN
School
Collection
Abstract
This study reviews how shallow water carbonates are revealing environmental and climatic changes on all scales through the last 50 million years in SE Asia. Marine biodiversity reaches a global maximum in the region, yet the environmental conditions are at odds with the traditional view of ‘blue-water’ reefal development. The region is characterized by complex tectonics, major volcanism, high terrestrial runoff, nutrient influx, everwet and monsoonal Q1 climates, low salinities, major currents and ENSO (El Nin˜o/Southern Oscillation) fluctuations. Terrestrial runoff, nutrient upwelling, tectonics, volcanism and recent human activities are major influences on the modern development of carbonate systems. Coral schlerochronology is revealing how these factors vary locally over annual and decadal scales. The strong impact of Q2 vertical tectonic movements and the interplay with eustasy is evaluated from Quaternary and Pleistocene coral reef terraces.Isotopic data from terrace deposits indicates that interglacials may have been up to 3–6 8C warmer than glacials, consistent with the region’s record from terrestrial and deep marine deposits. Study of outcrop and subsurface carbonate deposits reveals the impact of tectonics, siliciclastic, nutrient influx, eustasy and oceanography on individual systems over millennial timescales. Major changes in oceanography, plate tectonics, climate change and perhaps fluctuating CO2 levels impacted Cenozoic regional carbonate development. Results of studies from terrestrial and deep marine realms are comparable with those from the carbonates, but have yielded higher resolution records of changing currents, precipitation and the monsoons. There is considerable scope for further research, however, SE Asian carbonates are powerful tools in evaluating past environmental change in the equatorial tropics.
Related items
Showing items related by title, author, creator and subject.
-
Wilson, Moyra (2008)The SE Asian carbonate record allows insight into the poorly known response of equatorial marine systems to regional and global change during the Cenozoic. There is a marked change from larger benthic foraminifera to ...
-
Fiore, A.; Naik, V.; Spracklen, D.; Steiner, A.; Unger, N.; Prather, M.; Bergmann, D.; Cameron-Smith, P.; Cionni, I.; Collins, Bill; Dalsøren, S.; Eyring, V.; Folberth, G.; Ginoux, P.; Horowitz, L.; Josse, B.; Lamarque, J.; Mac Kenzie, I.; Nagashima, T.; O'Connor, F.; Righi, M.; Rumbold, S.; Shindell, D.; Skeie, R.; Sudo, K.; Szopa, S.; Takemura, T.; Zeng, G. (2012)Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air ...
-
Wardell-Johnson, Grant; Keppel, Gunnar; Sander, Juliane (2011)We review the threats from anthropogenic climate change to the terrestrial biodiversity of Oceania, and quantify decline in carbon stocks. Oceania’s rich terrestrial biodiversity is facing unprecedented threats through ...