Show simple item record

dc.contributor.authorSaffari, S.E.
dc.contributor.authorAdnan, R.
dc.contributor.authorGreene, William
dc.date.accessioned2017-01-30T12:07:43Z
dc.date.available2017-01-30T12:07:43Z
dc.date.created2016-09-22T12:04:51Z
dc.date.issued2011
dc.identifier.citationSaffari, S.E. and Adnan, R. and Greene, W. 2011. Handling of Over-Dispersion of Count Data via Truncation using Poisson Regression Model. Journal of Computer Science & Computational Mathematics. 1 (1): pp. 1-4.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/18413
dc.description.abstract

A Poisson model typically is assumed for count data. It is assumed to have the same value for expectation and variance in a Poisson distribution, but most of the time there is over-dispersion in the model. Furthermore, the response variable in such cases is truncated for some outliers or large values. In this paper, a Poisson regression model is introduced on truncated data. In this model, we consider a response variable and one or more than one explanatory variables. The estimation of regression parameters using the maximum likelihood method is discussed and the goodness-of-fit for the regression model is examined. We study the effects of truncation in terms of parameters estimation and their standard errors via real data.

dc.publisherSandkrs Sdn Bhd
dc.relation.urihttp://www.jcscm.net/fmgr/download.php?id=1705649
dc.subjecttruncation
dc.subject- parameter estimation
dc.subjectover-dispersion
dc.subjectPoisson regression
dc.titleHandling of Over-Dispersion of Count Data via Truncation using Poisson Regression Model
dc.typeJournal Article
dcterms.source.volume1
dcterms.source.number1
dcterms.source.startPage1
dcterms.source.endPage4
dcterms.source.issn2231-8879
dcterms.source.titleJournal of Computer Science & Computational Mathematics
curtin.departmentSchool of Economics and Finance
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record